

МАТЕМАТИКА. ПРАКТИЧЕСКИЙ КУРС

В ПОМОЩЬ ПОВТОРЯЮЩИМ МАТЕМАТИКУ ПО СПРАВОЧНИКАМ

Тема 12. ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Содержание

- 1. Показательные уравнения
- 2. Системы показательных уравнений.
- 3. Логарифмические уравнения
- 4. Системы логарифмических уравнений
- **5.** Тождественные преобразования показательных и логарифмических выражений
- 6. Решение показательных неравенств
- 7. Решение логарифмических неравенств

Решение показательных уравнений

Простейшим показательным уравнением является уравнение вида $a^x = b$, где a > 0 и $a \neq 0$. Очевидно, что при b < 0 это уравнение корней не имеет (в области действительных чисел), поскольку $a^x > 0$ для всех действительных значений x.

a) Решением уравнения вида $a^{f(x)}=1$ (по определению степени с нулевым показателем) будет f(x)=0.

Пример 1.760. Решить уравнение $5^{4\sqrt{x-3}-x}=1$.

Решение. По определению степени с нулевым показателем имеем: $4\sqrt{x-3}-x=0$, то есть $4\sqrt{x-3}=x$, откуда $x^2-16x+48=0$.

Решая полученное уравнение, получим $x_1=4,\ x_2=12.$ От вет: $x_1=4,\ x_2=12.$

б) Решением уравнения вида $a^x = a^n$ является x = n.

Очевидно, что уравнение $a^{f(x)} = a^{\phi(x)}$ равносильно уравнению $f(x) = \phi(x)$.

Пример 1.761. Решить уравнение

$$32^{\frac{x+5}{x-7}} = 0.25 \cdot 128^{\frac{x+17}{x-3}}.$$

Решение. Запишем данное уравнение в виде

$$2^{5 \cdot \frac{x+5}{x-7}} = 2^{7 \cdot \frac{x+17}{x-3}-2}$$

Тогда уравнение $\frac{5x+25}{x-7} = \frac{7x+119}{x-3} - 2$ равносильно данному.

Решая полученное уравнение, находим x = 10.

Ответ: 10.

a) Если левая и правая части уравнения вида $a^x = b$ не сводятся к одному основанию, то из равенства $x^x = b$ по определению логарифма следует $x = \log_a b$.

Пример 1.762. Решить уравнение $3^{2x-1} = 5^{3-x}$.

Решение. Прологарифмировав обе части уравнения, получим: $\lg 3^{2x-1} = \lg 5^{3-x}$,

$$(2x-1) \lg 3 = (3-x) \lg 5,$$

 $2x \lg 3 + x \lg 5 = 3 \lg 5 + \lg 3,$
 $x (2 \lg 3 + \lg 5) = 3 \lg 5 + \lg 3.$

$$x (2 \lg 3 + \lg \frac{5}{4}) = 3 \lg 5 + \lg 3,$$

откуда $x = \frac{3 \lg 5 + \lg 3}{2 \lg 3 + \lg 5}.$

OTBET:
$$\frac{3 \lg 5 + \lg 3}{2 \lg 3 + \lg 5}$$
.

Пример 1.763. Решить уравнение $3^{x-3} = 5^{x^2-7x+12}$. *Решение.* Переходим к равносильному уравнению

$$x - 3 = (x^2 - 7x + 12) \log_3 5$$

или

$$x-3=(x-3)(x-4)\log_2 5$$

откуда или x = 3 или $(x - 4) \log_3 5 = 1$.

Отсюда
$$x = 4 + \frac{1}{\log_3 5} = 4 + \log_5 3$$
.

Ответ: 3, $4 + \log_5 3$.

г) Уравнения вида

$$A_0 a^{mx+k_0} + A_1 a^{mx+k_1} + \cdots + A_n a^{mx+k_n} = M,$$

где M, A_0 , A_1 , ..., A_n , a, m и k_0 , k_1 , ..., k_n — постоянные величины, решаются вынесением за скобки общего множителя a^{mx+k_i} , где k_i — наименьшее из чисел k_0 , k_1 , ..., k_n .

Пример 1.764. Решить уравнение

$$2^{3\sqrt{x}} + 3 \cdot 2^{3\sqrt{x} - 1} = 20.$$

Решение.
$$2^{3\sqrt{x}+1}$$
 $(2+3)=20$, $2^{3\sqrt{x}-1}=4$, $2^{3\sqrt{x}+1}=2^2$, $3\sqrt{x}-1=2$.

Отеюда x=1.

Ответ: 1.

Пример 1.765. Решить уравнение

$$3^{2x+5} + 3^{2x-7} + 3^{2x-9} = 45\frac{1}{2} + 22\frac{3}{4} + 11\frac{3}{8} + \cdots$$

Решение. Правая часть уравнения является бесконечно убывающей геометрической прогрессией;

$$q = 22 \frac{3}{4} : 45 \frac{1}{2} = \frac{1}{2}, S = \frac{a_1}{1 - q} = \frac{45 \frac{1}{2}}{1 - \frac{1}{2}} = 91.$$

Поэтому данное уравнение принимает вид

$$3^{2x+9} (3^4+3^2+1)=91$$
, $3^{2x+9}\cdot 91=91$, $3^{2x-9}=1$, откуда $x=4.5$.

Ответ: 4,5.

Пример 1.766. Решить уравнение

$$4^{2x} - 3^{2x - \frac{1}{2}} = 3^{2x + \frac{1}{2}} - 2^{4x - 1}.$$

Pemenue. $2^{4x} + 2^{4x-1} = 3^{2x + \frac{1}{2}} + 3^{2x - \frac{1}{2}}$,

$$2^{4x+1}(2+1) = 3^{2x-\frac{1}{2}}(3+1), \quad 2^{4x-1} \cdot 3 = 3^{2x-\frac{1}{2}} \cdot 2^{2}.$$

Разделив обе части уравнения на 12, имеем

$$2^{4x+3}=3^{2x-\frac{3}{2}},\quad 4^{2x-\frac{3}{2}}=3^{2x-\frac{3}{2}},\quad \left(\frac{4}{3}\right)^{2x-\frac{3}{2}}=1.$$
 Отсюда
$$2x-\frac{3}{2}=0,\quad x=\frac{3}{4}.$$

OTBET: $\frac{3}{4}$.

д) Уравнения вида

$$A_0 a^{2f(x)} + A_1 a^{f(x)} + A_2 = 0$$

часто называют трехчленными показательными уравнениями.

Уравнение при помощи подстановки $a^{f(x)} = y$ сводится к квадратному уравнению

$$A_0 y^2 + A_1 y + A_2 = 0.$$

Решив это уравнение, найдем корни y_1 и y_2 . После этого решение исходного уравнения сводится к решению таких двух уравнений:

$$a^{f(x)} = y_1$$
 и $a^{f(x)} = y_2$.

Пример 1.767. Решить уравнение

$$9^{\sqrt{x^2-2x}-x}-7\cdot 3^{\sqrt{x^2-2x}-x-1}=2.$$

Решение. Запишем уравнение в виде

$$3^{2(\sqrt{x^2-2x}-x)}-\frac{7}{3}\cdot 3^{\sqrt{x^2-2x}-x}=2$$

и обозначим

$$3^{\sqrt{x^2-2x}-x}=y, \ y>0.$$

Получим уравнение $3y^2-7y-6 \ne 0$, имеющее корни $y_1=3$ и $y_2=-\frac{2}{3}$.

Второй корень не удовлетворяет заданному условию y > 0. Таким образом, исходное уравнение в области допустимых значений неизвестного равносильно уравнению $3^{\sqrt{x^2-2x}-x}=3^1$, а последнее уравнение равносильно иррациональному уравнению

$$\sqrt{x^2-2x}=x+1.$$

Возведя обе части равенства в квадрат, найдем x = -0.25. Поскольку при возведении обеих частей уравнения в четную степень могут появиться посторонние корни, проверка необходима именно на этом этапе. Подстановка найденного x в иррациональное уравнение показывает, что значение x = -0.25 удовлетворяет ему, а значит, и исходному уравнению.

Ответ: -0.25.

е) Уравнение вида

$$A_0 a^x + A_1 a^{\frac{x}{2}} b^{\frac{x}{2}} + A_2 b^x = 0$$

легко сводится к предыдущим уравнениям делением обеих частей уравнения на $b^x \neq 0$. Тогда получим

$$A_0 \left(rac{a}{b}
ight)^x + A_1 \left(rac{a}{b}
ight)^{rac{x}{2}} + A_2 = 0.$$
 Обозначив $\left(rac{a}{b}
ight)^{rac{x}{2}} = y$, имеем $A_0 \ y^2 + A_1 y + A_2 = 0.$

Решив уравнение, найдем y_1 и y_2 , после чего возвращаемся к подстановке:

a)
$$\left(\frac{a}{b}\right)^{\frac{x}{2}} = y_1$$
, δ) $\left(\frac{a}{b}\right)^{\frac{x}{2}} = y_2$.

Пример 1.768. Решить уравнение

$$3 \cdot 16^x + 2 \cdot 81^x = 5 \cdot 36^x$$
.

Решение. Поскольку $81^x \neq 0$, то данное уравнение равносильно уравнению

$$3\left(\frac{16}{81}\right)^x + 2 = 5\left(\frac{36}{81}\right)^x$$
, или $3\left(\frac{4}{9}\right)^{2x} + 2 = 5\left(\frac{4}{9}\right)^x$.

Положив $\left(\frac{4}{9}\right)^x = y$, приходим к квадратному уравнению

$$3y^2 - 5y + 2 = 0.$$

Его корни
$$y_1 = 1$$
, $y_2 = \frac{2}{3}$. Решая уравнения $\left(\frac{4}{9}\right)^x = 1$ и $\left(\frac{4}{9}\right)^x = \frac{2}{3}$, получим в первом случае $x = 0$, а во втором $\left(\frac{2}{3}\right)^{2x} = \frac{2}{3}$, то есть $2x = 1$, или $x = \frac{1}{2}$. Ответ: $0, \frac{1}{2}$.

Пример 1.769. Решить уравнение

$$3^{2x^2+6x-9}+4\cdot 15^{x^2+3x-5}=3\cdot 5^{2x^2+6x-9}$$

Решение. Обозначим $x^2 + 3x - 5 = y$, после чего уравнение запишем так:

$$3^{2y+1} + 4 \cdot 15^y = 3 \cdot 5^{2y+1}$$
, или $3 \cdot 3^{2y} + 4 \cdot 15^y = 15 \cdot 5^{2y}$.

Разделив левую и праву части на 5^{2y} , приходим к уравнению

$$3\left(\frac{3}{5}\right)^{2y}+4\left(\frac{3}{5}\right)^{y}-15=0.$$

Решая это уравнение, получаем $\left(\frac{3}{5}\right)^y = \frac{5}{3}$, откуда y = -1.

Второе уравнение $\left(\frac{3}{5}\right)^x=-3$ решений не имеет, посколь-

$$\operatorname{кy}\left(\frac{3}{5}\right)^x > 0$$
 при всех допустимых значениях x .

Возвращаясь к подстановке, решаем квадратное уравнение $x^2 + 3x - 5 = -1$.

Рассмотрим задачи, которые решаются при помощи свойства монотонности показательной функции.

Пример 1.770. Решить уравнение

$$3 \cdot 4^x + (3x - 10) \cdot 2^x + 3 - x = 0.$$

Peшение. Это уравнение не принадлежит ни одному из рассмотренных типов. Сделаем замену $2^x = y$. Уравнение примет вид

$$3y^2 + (3x - 10) y + 3 - x = 0.$$

Решим полученное уравнение как квадратное относительно у. Имеем:

$$y = \frac{-3x + 10 \pm \sqrt{(3x - 10)^2 - 12(3 - x)}}{6} =$$

$$=\frac{-3x+10\pm\sqrt{9x^2-48x+64}}{6}=\frac{-3x+10\pm(3x-8)}{6},$$

откуда или y = 3 - x, или $y = \frac{1}{3}$.

Уравнение $2^x = \frac{1}{3}$ имеет корень $x = -\log_2 3$.

Теперь решим уравнение $2^x = 3 - x$. Легко найти корень x = 1. Докажем, что других корней у этого уравнения нет. Действительно, при x = 1 левая часть уравнения равна правой. Левая часть — возрастающая функция, а правая — убывающая. Поэтому при x < 1 левая часть будет меньше правой, а при x > 1 наоборот.

Ответ: 1, - log, 3.

Пример 1.771. Решить уравнение $6^x - 2^x = 32$.

Решение. Легко заметить, что уравнение удовлетворяет значение x = 2. Докажем, что других корней нет. Для этого запишем уравнение так:

$$3^x - 1 = \frac{32}{2^x}$$
.

 Π равая часть является убывающей функцией, левая — возрастающей. Таким образом, x = 2 — единственный корень этого уравнения.

Ответ: 2.

Упражнения

Решить уравнение:

1.772.
$$8^x = 32$$
.

1.773.
$$49^x = \frac{1}{7}$$
.

1.774.
$$\sqrt[4]{a^{x+1}} = \sqrt[3]{a^{x-2}}$$
.

1.775.
$$\left(\frac{1}{0,125}\right)^{x} = 128$$
.
1.776. $1000 \sqrt[3]{(0,1)^{\frac{3}{x}}} = 100^{x}$.

1.776. 1000
$$\sqrt{(0,1)^{\frac{y}{x}}} = 100^{x}$$
.

1.777.
$$\frac{(0,2)^{x+0,5}}{\sqrt{5}} = 5 \cdot 0.04^{x}.$$

1.778.
$$\frac{1}{9} \cdot \sqrt{27^{\frac{2x+1}{x}}} = \sqrt{9^{2x-1}}$$
.

1.779.
$$2 \cdot 2^3 \cdot 2^5 \cdot \ldots \cdot 2^{2x-1} = 512$$
.

1.780.
$$3 \cdot 16^{x^2 - 16x - 15\frac{3}{4}} = 48 + 24 + 12 + \dots$$

1.781.
$$8^{x-3} = 9^{x-3}$$
.

1.782.
$$11^{x-7} = 17^{7-x}$$
.

$$1.783. \ 2^{3x} \cdot 7^{x-2} = 4^{x+1}.$$

1.784.
$$3^{x+2} - 3^x = 72$$
.

1.785.
$$2^x - 2^{x-4} = 15$$
.

1.786,
$$2^{x+1} + 3 \cdot 2^{x-1} - 5 \cdot 2^x + 6 = 0$$
.

1.787.
$$5^{x-3} - 5^{x-4} - 16 \cdot 5^{x-5} = 2^{x-3}$$
.

$$1.788. 2^x = 5.$$

1,789,
$$3^{2x} - 5 \cdot 3^x + 6 = 0$$
.

1.790.
$$4^x + 2^{x+1} = 80$$
.

1.791,
$$2^{2x+1} + 2^{x+2} = 16$$
.

1.792.
$$4^x + 6^x = 9^x$$
.

1.793.
$$3^x + 4^x = 5^x$$
.

1.794.
$$1+3^{\frac{x}{2}}=2^x$$
.

1.795.
$$(\sqrt{2-\sqrt{3}})^x + (\sqrt{2+\sqrt{3}})^x = 4$$
.

1.796.
$$(\sqrt{2-\sqrt{3}})^x + (\sqrt{2+\sqrt{3}})^x = 2^x$$
.

1.797.
$$\sqrt{2^x \sqrt[3]{4^x \cdot 0.125^{1/x}}} = 4 \sqrt[3]{2}$$
.

1.798.
$$2^{x^2-3} \cdot 5^{x^2-3} = 0.01 (10^{x-1})^3$$
.

1.799.
$$10^{\frac{2}{x}} + 25^{\frac{1}{x}} = 4.25 \cdot 50^{\frac{1}{x}}$$
.

1.800.
$$(\sqrt[5]{3})^x + (\sqrt[10]{3})^{x-10} = 84.$$

1.801.
$$\frac{2^x + 10}{4} = \frac{9}{2^{x-2}}$$
.

1.802.
$$5^{2x-1} + 2^{2x} - 5^{2x} + 2^{2x+2} = 0$$
.

1.803.
$$5^{x-1} + 5 \cdot 0.2^{x-2} = 26.$$

1.804.
$$(\sqrt{7} + \sqrt{48})^x + (\sqrt{7} - \sqrt{48})^x = 14$$
.

1.805.
$$5^{1+x^2} - 5^{1-x^2} = 24$$
.

1.806.
$$3^{2x+4} + 45 \cdot 6^x - 9 \cdot 2^{2x+2} = 0$$
.

$$1.807. \ 3 \cdot 16^x + 2 \cdot 81^x = 5 \cdot 36^x.$$

59.
$$\left(\frac{1}{64^2}\right)^{-x} = \sqrt{\frac{1}{8}}$$
.

60.
$$5^{\frac{x}{\sqrt{2}}} = 625$$
.

61.
$$\left(\frac{3}{7}\right)^{3x-7} = \left(\frac{7}{3}\right)^{7x-5}$$
.

62.
$$\left(\frac{2}{3}\right)^{x} \cdot \left(\frac{9}{8}\right)^{x} = \frac{27}{64}$$
.

63.
$$6^{|x|} = 36$$
.

64.
$$7^{1-|x|} = 49$$
.

65.
$$3^x \left(\frac{1}{3}\right)^{x-3} = \left(\frac{1}{27}\right)^x$$
.

66.
$$2^x \cdot 5^x = 0,1 (10^{x-1})^5$$
.

67.
$$\left(\frac{3}{4}\right)^{x-1}\sqrt[x]{\frac{4}{3}} = \frac{9}{16}$$
.

68.
$$x^{x^3-5x+6}=1$$
.

$$80. \ 3^{r} - 3^{r-2} = 8.$$

81.
$$2 \cdot 3^{x+3} - 5 \cdot 3^{x-2} = 1443$$
.

82.
$$5^{x-1} + 2^x - 5^x + 2^{x+2} = 0$$
.

83.
$$10^{x} + 10^{x-1} = 0.11$$
.

84.
$$10^{x} - 5^{x-1} \cdot 2^{x-2} = 950$$
.

102.
$$7^{2x} - 6 \cdot 7^x + 5 = 0$$
.
103. $4^x - 9 \cdot 2^x + 8 = 0$.
104. $5^{2x-1} + 5^{x+1} = 250$.

Решение показательно-степенных уравнений

Прежде всего заметим, что поскольку функция не показательная, а показательно-степенная, которая имеет вид $y = u(x)^{v(x)}$, то ее область определения находим, рассматривая три случая:

- 1. u(x) > 0, v(x) произвольное число;
- 2. u(x) < 0, v(x) целое число;
- 3. u(x) = 0, v(x) целое положительное число.

Тогда можно сказать, что -1 является корнем уравнения $x^{2x} = 1$, но не является корнем уравнения $x^{2x} = 1$, поскольку выражение $(-1)^{-\frac{2}{3}}$ не определено, то есть не имеет смысла. Число -8 не является корнем уравнения $x^{\frac{x}{3}} = x^{-\frac{8}{3}}$, поскольку выражение $(-8)^{-\frac{8}{3}}$ также не имеет смысла.

Числа 0 и $-\frac{1}{2}$ являются корнями уравнения $x^{2x+5}=x^4$.

Число 0 не является корнем уравнения $x^{x+\frac{5}{2}}=x^2$, поскольку выражение $0^{\frac{5}{2}}$ не имеет смысла.

Число $-\frac{1}{2}$ является корнем этого уравнения.

Числа 0 и $-\frac{1}{2}$ не, являются корнями уравнения $x^{\frac{2x+5}{3}} = x^{\frac{4}{3}}$. В соответствии с этим делаем вывод, что решение уравнений вида $(f(x))^{\phi(x)} = (f(x))^m$ сводится к таким случаям:

1.
$$f(x) = 1$$
,

$$2. \quad f(x) = -1,$$

2. f(x) = -1, Проверка корней, найден-3. f(x) = 0, ных в 2, 3 и 4 случаях, обязательна.

$$4. \quad \varphi(x) = m.$$

Пример 1.808. Решить уравнение

$$(x+5)^{x^2-x-1}=x+5.$$

Решение. Рассмотрим случаи:

1.
$$x + 5 = 1$$
, $x_1 = -4$.

$$x_1 = -4.$$

2.
$$x + 5 = -1$$
,

$$x_2 = -6$$
.

3.
$$x + 5 = 0$$
, $x_3 = -5$.

$$x_3 = -5.$$

4.
$$x^2 - x - 1 = 1$$
, $x_4 = 2$, $x_5 = -1$.

Проверкой убеждаемся, что все найденные корни удовлетворяют уравнению.

Ответ:
$$-4, -6, -5, 2, -1$$
.

Пример 1.809. Решить уравнение

$$(x+4)^{x^2+9x+8}=1.$$

Решение. Рассмотрим случаи:

1.
$$x + 4 = 1$$
.

$$x_1 = -3.$$

1.
$$x + 4 = 1$$
, $x_1 = -3$.
2. $x + 4 = -1$, $x_2 = -5$.

$$x_2 = -5.$$

3.
$$x^2 + 9x + 8 = 0$$
, $x_3 = -8$, $x_4 = -1$.

$$x_2 = -8, x_4 = -1.$$

Проверкой убеждаемся, что все найденные корни удовлетворяют уравнению.

Ответ:
$$-3, -5, -8, -1$$
.

Пример 1.810. Решить уравнение

$$x^{\frac{4}{5}} - 7x^{-\frac{2}{5}} + 6x^{-1} = 0.$$

Решение. Заметим, что это уравнение не является показательно-степенным, но поскольку у него дробные показатели степени, то будем считать, что x принимает только положительные значения.

Запишем уравнение в виде

$$x^{\frac{9}{5}} - 7x^{\frac{3}{5}} + 6 = 0.$$

Обозначив
$$x^{\frac{3}{5}}=y$$
, получим $y^3-7y+6=0$ или $(y-1)\;(y^2+y-6)=0$, откуда $y_1=1,\;y_2=2,\;y_3=-3.$

Однако $x^{\frac{3}{5}}>0$, поэтому $y_3=-3$ не удовлетворяет уравнению. Возвращаясь к подстановке, получим $x^{\frac{3}{5}}=1$, откуда $x_1=1$. $x^{\frac{3}{5}}=2$, откуда $x_2=2\sqrt[3]{4}$.

Ответ: $1, 2\sqrt[3]{4}$.

Упражнения

Решить уравнения:

1.811.
$$(x + 2)^{x^2 - 5x + 6} = (x + 2)^2$$
.

1.812.
$$(x-7)^{x^2-9x+8}=1$$
.

1.813.
$$x^{*} = 1$$
.

1.814.
$$x^x = x$$
.

$$1.815. \ x^{x^2-2x}=1.$$

1.816.
$$(x-3)^{x^2-x}=(x-3)^2$$
.

1.817.
$$(x^2 - x - 1)^{x^2 - x} = 1$$
.

Решение логарифмических уравнений

Погарифмическими называются уравнения, содержащие неизвестное под знаком логарифма или в основании логарифма (или то и другое одновременно).

Простейшими логарифмическими уравнениями являются уравнения вида

$$\log_a x = b \quad \text{if } \log_x m = n.$$

При решении логарифмических уравнений используются определения логарифма и его свойства, действия логарифмирования и потенцирования, различные логарифмические тождества.

Рассмотрим пример, когда в соотношении $a^x = N$, N > 0, a > 0, $a \neq 0$, $a \neq 1$, требуется найти x.

Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести число a, чтобы получить число N.

Логарифм обозначается через $\log_a N$.

Таким образом, выражения

$$\log_a N = x \quad \text{if} \quad a^x = N$$

имеют одинаковый смысл.

По определению, основание логарифма a всегда положительно и отлично от единицы. Логарифмируемое число N — положительно.

Из определения логарифма следует основное логарифмическое тождество

$$a^{\log_a b} = b.$$

Рассмотрим некоторые свойства логарифмов.

1. Если логарифмируемое число и основание логарифма равны между собой, то логарифм равен единице. Справедливо и обратное утверждение: если логарифм равен единице, то число и основание логарифма равны между собой:

$$\log_a a = 1$$
.

2. Логарифм единицы по любому основанию $a \neq 1$ и a > 0 равен нулю:

$$\log_a 1 = 0$$
.

Справедливо и обратное утверждение.

- 3. Логарифмическая функция $y = \log_a x$ монотонна на всей области определения. Она возрастает, когда a > 1, и убывает, когда 0 < a < 1.
- 4. Из равенства $\log_a x_1 = \log_a x_2$ согласно свойствам монотонной логарифмической функции, следует, что $x_1 = x_2$.
- 5. Логарифм произведения положительных сомножителей равен сумме логарифмов по тому же основанию, то есть

$$\log_a (x_1 \cdot x_2) = \log_a x_1 + \log_a x_2.$$

Заметим, что условие $x_1>0$, $x_2>0$ существенно, поскольку логарифм произведения двух отрицательных чисел $x_1<0$, $x_2<0$ имеет смысл, но

$$\log_a (x_1 \cdot x_2) = \log_a |x_1| + \log_a |x_2|.$$

6. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя по тому же основанию, то есть

$$\log_a \frac{x_1}{x_2} = \log_a x_1 - \log_a x_2.$$

Аналогично свойству 5, если $x_1 < 0$, $x_2 < 0$, то

$$\log_a \frac{x_1}{x_2} = \log_a |x_1| - \log_a |x_2|.$$

7. Логарифм степени произвольного положительного числа равен логарифму этого числа, умноженному на показатель степени:

$$\log_a x^n = n \log_a x$$
, n — любое действительное число.

Следствие. Логарифм корня из положительного числа равен логарифму подкоренного выражения, разделенного на показатель корня.

$$\log_a \sqrt[n]{x} = \frac{1}{n} \log_a N$$
, n — натуральное число.

Нахождение логарифмов заданных чисел или выражений называется операцией **логарифмирования**.

Пример 1.818. Прологарифмировать по основанию а:

$$\sqrt[5]{\frac{a^3 (a+b)}{cd^2}} \quad (a>0, \ b>0, \ c>0, \ d>0).$$

Решение. Запишем данное выражение в виде

$$\sqrt[5]{\frac{a^3(a+b)}{cd^2}} = \frac{a^{\frac{3}{5}}(a+b)^{\frac{1}{5}}}{\frac{1}{c^{\frac{1}{5}}}\frac{2}{d^{\frac{1}{5}}}}.$$

Согласно свойствам 5-7 имеем:

$$\log_n \sqrt[5]{\frac{a^3 (a+b)}{cd^2}} = \frac{3}{5} \log_n a + \frac{1}{5} \cdot \log_n (a+b) - \frac{1}{5} \log_n c - \frac{2}{5} \log_n d.$$

Действие, обратное логарифмированию, называется потенцированием. При потенцировании нужно пользоваться правилами, обратными правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов — логарифмом частного.

Пример 1.819. Найти N, если

$$\log_a N = \frac{2}{7} \log_a b - 2 \log_a c.$$

Решение. По правилам потенцирования запишем:

$$\log_a N = \log_a b^{\frac{2}{7}} - \log_a c^2, \quad \log_a N = \log_a \frac{b^{\frac{2}{7}}}{c^2}.$$

Отсюда
$$N = \frac{b^{\frac{2}{7}}}{c^2} = \frac{\sqrt[7]{b^2}}{c^2}$$
.

OTBET:
$$\frac{\sqrt[7]{b^2}}{c^2}.$$

Общее правило перехода от логарифмов по основанию a к логарифмам по другому основанию c имеет вид:

$$\log_a N = \frac{\log_c N}{\log_c a}.$$

Коэффициент $\frac{1}{\log_c a}$ в этой формуле называют модулем перехода от логарифма c по основанию a к логарифму по основанию c.

Используя данную формулу, легко доказать формулы

$$\log_a b = \frac{1}{\log_b a}$$
, $\log_{a^n} b = \frac{1}{n} \log_a b$, $\log_{a^n} b^n = \log_a b$,

$$\log_{a^n} b^k = \frac{k}{n} \log_a b.$$

При решении примеров иногда используется тождество $a^{\log_m b} = b^{\log_m a}$, которое предлагаем доказать самостоятельно.

Уравнения, решаемые при помощи определения логарифма

Пример 1.820. Решить уравнение

$$\log_3 (5 + 4 \log_3 (x - 1)) = 2.$$

Решение. По определению логарифма

$$5+4\log_3(x-1)=3^2,$$

ИЛИ

$$4 \log_3 (x-1) = 9 + 5, \log_3 (x-1) = 1.$$

По определению логарифма будем иметь x - 1 = 3, x = 4. Проверкой убеждаемся в правильности решения.

Ответ: 4.

Пример 1.821. Решить уравнение

$$\log_4 (2 \log_3 (1 + \log_2 (1 + 3 \log_3 x))) = \frac{1}{2}.$$

Решение. По определению логарифма

$$2 \log_3 (1 + \log_2 (1 + 3 \log_3 x)) = 2,$$

$$\log_3 (1 + \log_2 (1 + 3 \log_3 x)) = 1.$$

Применяем еще раз определение логарифма:

$$1 + \log_2 (1 + 3 \log_3 x) = 3$$
, $\log_2 (1 + 3 \log_3 x) = 2$.

Отсюда, по определению логарифма,

$$1+3\log_3 x=4,$$

$$3 \log_3 x = 3$$
, $\log_3 x = 1$.

Ответ: 3.

Пример 1.822. Решить уравнение

$$\log_3 (4 \cdot 3^{x-1} - 1) = 2x - 1.$$

Решение. Данное уравнение равиосильно уравнению

$$4 \cdot 3^{x-1} - 1 = 3^{2x-1}$$
.

Сделаем подстановку $3^x = y$ и получим квадратное уравнение

$$y^2 - 4y + 3 = 0.$$

Решая его, получим $y_1 = 1$, $y_2 = 3$. Возвращаясь к подстановке, имеем $x_1 = 0$, $x_2 = 1$.

Ответ: 0, 1.

Логарифмические уравнения, решаемые потенцированием

Пример 1.823. Решить уравнение

$$\lg (x + 10) + \frac{1}{2} \lg x^2 = 2 - \lg 4.$$

Pешение. Находим область допустимых значений: x > -10, $x \neq 0$. Уравнение принимает вид

$$\lg (x + 10) + \lg |x| + \lg 4 = 2,$$

откуда

$$\lg (4 |x| (x + 10)) = \lg 100,$$

а данное уравнение равносильно такому:

$$4 |x| (x + 10) = 100.$$

Рассматривая два случая и решая соответствующие уравнения, имеем:

a)
$$x > 0$$
, $x^2 + 10x - 25 = 0$, $x = -5 + 5\sqrt{2}$.

$$6)-10 < x < 0, x^2 + 10x + 25 = 0, x = -5.$$

Ответ:
$$-5+5\sqrt{2}$$
, -5 .

Пример 1.824. Решить уравнение

$$2 - x + 3 \log_5 2 = \log_5 (3^x - 5^{2-x}).$$

Решение. Запишем данное уравнение в виде

$$(2-x)\log_5 5 + \log_5 2^3 = \log_5 (3^x - 5^{2-x}),$$

$$\log_5 (8 \cdot 5^{2-x}) = \log_5 (3^x - 5^{2-x}).$$

Данное уравнение равносильно уравнению

$$8 \cdot 5^{2-x} = 3^{x} - 5^{2-x},$$
$$9 \cdot 5^{2-x} = 3^{x}.$$

Разделив обе части уравнения на 3^x, получим

$$3^{2-x} \cdot 5^{2-x} = 1$$
, $15^{2-x} = 1$,

откуда x = 2. Проверка показывает, что x = 2 удовлетво- ряет уравнению.

Ответ: 2.

Уравнения второй и выше степеней относительно логарифма

Пример 1.825. Решить уравнение

$$\lg_x 5\sqrt{5} - 1.25 = \lg_x^2 \sqrt{5}$$
.

Решение. $\lg_x 5^{\frac{3}{2}} - 1,25 = \frac{1}{4} \lg_x^2 5, x > 0, x \neq 1$,

$$\frac{3}{2}\lg_x 5 - 1,25 = \frac{1}{4}\lg_x^2 5,$$

$$\lg_x^2 5 - 6 \lg_x 5 + 5 = 0$$
, $\lg_x 5 = 3 \pm 2$.

- a) $\lg_x 5 = 1$, $x_1 = 5$.
- 6) $\lg_x 5 = 5$, $x^5 = 5$, $x_2 = \sqrt[5]{5}$.
- Ответ: 5, $\sqrt[5]{5}$.

Уравнения, содержащие неизвестное и в основании, и в показателе степени

Пример 1.826. Решить уравнение

$$x^{\lg^2 |x^2| - 3 \lg |x| + 4.5} = 10^{-2 \lg |x|}.$$

Решение. Область допустимых значений x > 0. На этом множестве исходное уравнение равносильно уравнению $\lg x^{\lg^2 x^2 - 3 \lg x - 4.5} = \lg 10^{-2 \lg x}$, или

$$(\lg^2 x^2 - 3 \lg x - 4,5) \lg x = -2 \lg x,$$

$$(4 \lg^2 x - 3 \lg x - 4,5) \lg x + 2 \lg x = 0,$$

$$\lg x (8 \lg^2 x - 6 \lg x - 5) = 0.$$

Решая это уравнение, имеем $\lg x = 0$, $\lg x = \frac{5}{4}$, $\lg x = -\frac{1}{2}$.

Отсюда
$$x_1 = 1$$
, $x_2 = 10^{\frac{5}{4}}$, $x_3 = 10^{-\frac{1}{2}}$.

OTBET: 1, $10\sqrt[4]{10}$, $\frac{\sqrt{10}}{10}$.

Применение основного логарифмического тождества

Пример 1.827. Решить уравнение

$$\log_2 (9 - 2^x) = 10^{\lg (3 + x)}.$$

Решение. Область допустимых значений:

$$\begin{cases} 9-2^{x} > 0, & \{2^{x} < 9, \\ 3-x > 0, & \{x < 3, \} \end{cases}$$

откуда $x \le 3$.

Применив к правой части уравнения основное логарифмическое тождество, будем иметь

$$\log_2 (9 - 2^x) = 3 - x.$$

По определению логарифма

$$2^{3-x}=9-2^x$$
, $\frac{8}{2^x}=9-2^x$ или $2^{2x}-9\cdot 2^x+8=0$,

откуда $2^x = 1$ и $2^x = 8$, $x_1 = 0$, $x_2 = 3$.

Ответ: 0; 3.

Пример 1.828. Решить уравнение

$$9^{\log_3(1-2x)}=5x^2-5.$$

Решение. Уравнение имеет смысл при x < 0.5. Преобразуем левую часть уравнения, учитывая основное логарифмическое тождество и свойство степеней:

$$3^{2 \log_3 (1-2x)} = 5x^2 - 5,$$

$$3^{\log_3 (1-2x)^2} = 5x^2 - 5,$$

$$(1-2x)^2 = 5x^2 - 5.$$

Полученное уравнение является следствием и оно не равносильно исходному уравнению. Проверкой убеждаемся в том, что первый его корень $x_1 = -2 - \sqrt{10}$ удовлетворяет исходному уравнению, а посторонний корень $x_2 = -2 + \sqrt{10}$ появляется вследствие расширения ОДЗ. Это произошло при замене выражения $9^{\log_3{(1-2x)}}$, которое имеет смысл при x < 0.5, выражением $(1-2x)^2$, определенным при произвольном значении аргумента.

Ответ:
$$-2 - \sqrt{10}$$
.

Пример 1.829. Решить уравнение

$$6^{\log_6^2 x} + x^{\log_6 x} = 12.$$

Решение. ОДЗ уравнения: x > 0 и $x \ne 1$. Считая, что x принадлежит этой области, проведем такие преобразования: $(6^{\log_6 x})^{\log_6 x} + x^{\log_6 x} = 12$,

$$x^{\log_6 x} + x^{\log_6 x} = 12,$$
 $x^{\log_6 x} = 6,$
 $\log_6 x^{\log_6 x} = \log_6 6,$
 $\log_6^2 x = 1,$
 $\log_6 x = \pm 1,$

откуда $x_1 = \frac{1}{6}$ и $x_2 = 6$.

Оба значения x входят в ОДЗ. Проверкой убеждаемся, что $x_1=\frac{1}{6}$ и $x_2=6$ удовлетворяют уравнению.

Oтвет:
$$\frac{1}{6}$$
, 6.

Логарифмические уравнения, решаемые при помощи перехода к другому основанию логарифма

Пример 1.830. Решить уравнение

$$\log_4 x + \log_{\frac{1}{16}} x + \log_8 x^3 = 5.$$

Решение. Приведем каждое слагаемое левой части уравнения к логарифмам с основанием 2:

$$\log_{2}^{2} x + \log_{2}^{4} x + \log_{2}^{3} x^{3} = 5,$$

$$\frac{1}{2} \log_{2} x - \frac{1}{4} \log_{2} x + \log_{2} x = 5,$$

откуда $\frac{5}{4} \log_2 x = 5$, $\log_2 x = 4$, x = 16.

Ответ: 16.

Пример 1.831. Решить уравнение

$$\log_{\frac{1}{2}}(x-1) + \log_{\frac{1}{2}}(x+1) - \log_{\frac{1}{\sqrt{2}}}(7-x) = 1.$$

Решение. Приведем логарифм левой части уравнения к логарифму по основанию 2:

$$-\log_2(x-1)-\log_2(x+1)+2\log_2(7-x)=1,$$
отсюда

$$2 \log_2 (7-x) = 1 + \log_2 (x-1) + \log_2 (x+1).$$

Тогда $(7-x)^2 = 2(x^2-1)$ или $x^2+14x-51=0$. Корни этого уравнения $x_1=3$, $x_2=-17$.

Подставляя в исходное уравнение найденные значения неизвестного, убеждаемся, что $x_1 = 3$ — его корень; второе значение ($x_2 = -17$) не удовлетворяет данному уравнению.

Ответ: 3.

Пример 1.832. Решить уравнение $\log_{2x} x + \log_{8x^2} x = 0$. Решение. Переходя к логарифмам с основанием 2,

имеем:
$$\frac{\log_2 x}{\log_2 2x} + \frac{\log_2 x}{\log_2 8x^2} = 0$$
,

$$\frac{\log_2 x}{1 + \log_2 x} + \frac{\log_2 x}{3 + 2\log_2 x} = 0.$$

Обозначим $\log_2 x = y$. Уравнение примет вид

$$\frac{y}{1+y}+\frac{y}{3+2y}=0.$$

Решая это уравнение, находим $y_1 = 0$, $y_2 = -\frac{4}{3}$.

Возвращаясь к подстановке, получаем

$$x_1 = 1, \quad x_2 = \frac{1}{2\sqrt[3]{2}}.$$

OTBET: 1,
$$\frac{1}{2\sqrt[3]{2}}$$
.

Применение свойств монотонности при решении логарифмических уравнений

Пример 1.833. Решить уравнение $\log_5 (x + 3) = 3 - x$.

Решение. Легко проверить, что x=2 является корнем данного уравнения, поскольку функция $y=\log_5(x+3)$.

возрастает на всей своей области определения, а функция y = 3 - x убывает. Таким образом, данное уравнение не имеет других корней.

Ответ: 2,

Пример 1.834. Решить уравнение

$$(x+1) \log_3^2 x + 4x \log_3 x - 16 = 0.$$

Решение. Обозначим $\log_3 x = y$. Уравнение примет вид $(x + 1) y^2 + 4xy - 16 = 0$.

Решая данное уравнение как квадратное относительно y, найдем $y_1 = \frac{4}{x+1}$, $y_2 = -4$. Возвращаясь к подстановке, получаем два уравнения:

$$\log_3 x = \frac{4}{x+1}$$
 u $\log_3 x = -4$.

Второе уравнение легко решается. Для решения первого уравнения достаточно заметить, что x=3 удовлетворяет уравнению, и функция, находящаяся в левой части, возрастает при x>0, а функция, находящаяся в правой части — убывает.

Ответ: 3,
$$\frac{1}{81}$$
.

Решение нестандартных уравнений, содержащих логарифмы

Пример 1.835. Решить уравнение

$$-3x^2 + 6x - 2 = \log_2(x^2 + 1) - \log_2 x.$$

Решение. Область допустимых значений уравнения x>0. Запишем уравнение в виде

1 - 3
$$(x - 1)^2 = \log_2\left(x + \frac{1}{x}\right)$$

С одной стороны $1-3(x-1)^2 \le 1$, а с другой — $\left(x+\frac{1}{x}\right) \ge 2$ как сумма взаимнообратных положительных величин. Тогда

$$\log_2\left(x+\frac{1}{x}\right)\geq 1,$$

поэтому и левая, и правая части исходного уравнения могут быть равны между собой только в том случае, когда каждая из них равна 1.

Другими словами, должна быть справедливой такая система двух уравнений с одним неизвестным:

$$\begin{cases} 1 - 3 (x - 1)^2 = 1, \\ \log_2 \left(x + \frac{1}{x} \right) = 1. \end{cases}$$

Первое уравнение системы имеет единственный корень x = 1. Этот корень удовлетворяет и второму уравнению, то есть является единственным решением системы, а вместе с ней и исходного уравнения.

Ответ: 1.

Пример 1.836. Решить уравнение

$$\frac{2}{\pi} \left(\arcsin \left(\frac{1}{2} \left(x + \frac{1}{x} \right) \right) \right) = 1 - \log_{\pi} x.$$

Решение. Поскольку x > 0, то $x + \frac{1}{x} \ge 2$ как сумма взаимнообратных положительных чисел и $\frac{1}{2} \left(x + \frac{1}{x} \right) \ge 1$.

Однако $\arctan\left(\frac{1}{2}\left(x+\frac{1}{x}\right)\right)$ при $x\geq 0$ существует тогда и только тогда, когда $\frac{1}{2}\left(x+\frac{1}{x}\right)\leq 1$. Поэтому уравнение может иметь решение только при $\frac{1}{2}\left(x+\frac{1}{x}\right)=1$, но тогда

 $arcsin 1 = \frac{\pi}{2}$ и уравнение примет вид

$$\frac{2}{\pi} \cdot \frac{\pi}{2} = 1 - \log_{\pi} x$$
, $\log_{\pi} x = 0$, $x = 1$.

Проверка показывает, что x = 1 удовлетворяет уравнению.

Ответ: 1.

Упражнения

Решить уравнение:

1.837.
$$\log_3 (1 - 2x) = 4$$
.

1.838.
$$3^{\log_3(x-7)} = \log_4 64$$
.

1.839.
$$\log_7 \log_3 \log_9 \log_9 x = 0$$
.

1.840.
$$\log_a (1 + \log_b (1 + \log_c (1 + \log_b x))) = 0.$$

1.841.
$$\lg (x + 2) - \lg 5 = \lg (x - 6)$$
.

1.842.
$$\lg (x + 6) - \frac{1}{2} \lg (2x - 3) = 2 - \lg 25.$$

1.843.
$$\frac{2 \lg x}{\lg (5x-4)} = 1$$
.

1.844.
$$\log_4 (x+3) - \log_4 (x-1) = 2 - \log_4 8$$
.

1.845.
$$\frac{17 - \lg x}{4 \lg x} = 4 \lg x$$
.

1.846.
$$\lg^2 x^3 - 10 \lg x + 1 = 0$$
.

1.847.
$$\log_8 x + \log_8^2 x + \log_8^3 x + \dots = \frac{1}{2}$$
.

1.848.
$$x^{-\log_2 x + 2} = 8$$
.

1.849.
$$x^{-\log_3 x + 4} = \frac{1}{27}$$
.

1.850.
$$x^{\log_2 x} = 4x$$
.

1.851.
$$x^{\log_3 3x} = 9$$
.

1.852.
$$x^{\lg x} = 3 = 10^{\lg \frac{10}{x} + 1}$$
.

1.853.
$$\log_2 x + \log_4 x + \log_{16} x = 7$$
.

1.854.
$$\log_{\frac{x^3}{2}} 2 \cdot \log_x 2 = \frac{1}{2}$$
.

1.855.
$$\log_4 (x + 12) \cdot \log_x 2 = 1$$
.

1.856.
$$\log_x 2 \cdot \log_{2x} 2 = \log_{4x} 2$$
.

1.857.
$$\log_{\frac{1}{2}} x + \log_4 x + \log_2^2 x = \frac{1}{2} \log_x x$$
.

1.858.
$$3^{\log_3^2 x} + x^{\log_3 x} = 6$$
.

1.859.
$$\lg (x + 1,5) = - \lg x$$
.

1.860.
$$5^{2(\log_5 2 + x)} - 2 = 5^{x + \log_5 2}$$
.

1.861.
$$x \lg \sqrt[5]{5^{2x-8}} - \lg 25 = 0.$$

1.862.
$$x^{\lg^3 x - 5 \lg x} = 0.0001$$
.

1.863.
$$\log_x 9x^2 \cdot \log_3^2 x = 4$$
.

1.864.
$$\log_{\frac{1}{2}}^2 4x + \log_2 \frac{x^2}{8} = 8.$$

1.865.
$$2 \log_x 27 - 3 \log_{27} x = 1$$
.

1.866.
$$x^{\log_4 |x| - 2} = 2^{3 (\log_4 |x| - 1)}$$
.

1.867.
$$9^{\log \frac{1}{3}(x+1)} = 5^{\log \frac{1}{5}(2x^2+1)}$$

1.868.
$$\log_3 x \cdot \log_9 x \cdot \log_{27} x \cdot \log_{81} x = \frac{2}{3}$$
.

1.869.
$$2^{\log_3 x^2} \cdot 5^{\log_3 x} = 400$$
.

1.870.
$$\log_{4x+1} 7 + \log_{9x} 7 = 0$$
.

1.871.
$$\log_5 x + \log_{25} x = \log_{\frac{1}{5}} \sqrt{3}$$
.

1.872.
$$x^2 \log_x 27 \cdot \log_9 x = x + 4$$
.

1.873.
$$\log_{10} x + \log_{\sqrt{10}} x + \log_{\sqrt{10}} x + \dots + \log_{\sqrt{10}} x = 5.5$$
.

1.874.
$$\log_x 2 - \log_4 x + \frac{7}{6} = 0$$
.

1.875.
$$\log_{x} (125x) \cdot \log_{25}^{2} x = 1$$
.

1.876.
$$2.5^{\log_3 x} + 0.4^{\log_3 x} = 2.9.$$

1.877.
$$5^{\lg x} = 50 - x^{\lg 5}$$
.

1.878.
$$\sqrt{\log_x \sqrt{5x}} = -\log_x 5$$
.

1.879.
$$\sqrt{2 \log_2 (-x)} - \log_8 \sqrt{x^2} = 0$$
.

1.880.
$$2 \lg x^2 - (\lg (-x))^2 = 4$$
.

1.881.
$$4 \log_4^2 (-x) + 2 \log_4 x^2 = -1.$$

1.882.
$$3^x = 10 - \log_2 x$$
.

Тождественные преобразования показательных и логарифмических выражений

Пример 1.883. Упростить выражение $a^{\frac{\lg \lg a}{\lg a}}$.

Решение.

$$a^{\frac{\lg \lg a}{\lg a}} = \left(a^{\frac{1}{\lg a}}\right)^{\lg \lg a} = (a^{\log_a 10})^{\lg \lg a} = 10^{\lg \lg a} = \lg a.$$
Ot Bet: $\lg a$.

Пример 1.884. Вычислить $\log_{30} 8$, если $\log_{30} 3 = a$, $\log_{30} 5 = b$.

Petitenue.
$$\log_{30} 8 = 3 \log_{30} 2 = 3 \log_{30} \frac{30}{15} =$$

= 3 ($\log_{30} 30 - \log_{30} 3 - \log_{30} 5$) = 3 (1 - a - b).

Oтвет: 3(1-a-b).

Пример 1.885. Доказать, что

$$\log_a m + \log_b m + \log_b m + \log_c m + \log_c m + \log_a m = \frac{\log_a m + \log_b m + \log_c m}{\log_{abc} m},$$

где m > 0, $m \ne 1$, a > 0, $a \ne 1$, b > 0, $b \ne 1$, c > 0, $c \ne 1$, $abc \ne 1$.

Решение.

$$\log_{a} m \cdot \log_{b} m + \log_{b} m \cdot \log_{c} m + \log_{c} m \cdot \log_{a} m =$$

$$= \frac{1}{\log_{m} a \cdot \log_{m} b} + \frac{1}{\log_{m} b \cdot \log_{m} c} + \frac{1}{\log_{m} c \cdot \log_{m} a} =$$

$$= \frac{\log_{m} a + \log_{m} b + \log_{m} c}{\log_{m} a \cdot \log_{m} b \cdot \log_{m} c} = \frac{\log_{m} abc}{\log_{m} a \cdot \log_{m} b \cdot \log_{m} c} =$$

$$= \frac{\log_{a} m \cdot \log_{b} m \cdot \log_{c} m}{\log_{abc} m},$$

что и требовалось доказать.

Пример 1.886. Вычислить сумму

$$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{1997} n},$$

когда n=1997!.

Решение.

$$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \dots + \frac{1}{\log_{1997} n} =$$

$$= \log_n 2 + \log_n 3 + \log_n 4 + \dots + \log_n 1997 =$$

$$= \log_n (1 \cdot 2 \cdot 3 \cdot \dots \cdot 1997) = \log_n (1997!) = \log_n n = 1.$$
Otbet: 1.

Пример 1.887. Вычислить $\log_6 16$, если $\log_{12} 27 = a$.

Решение.
$$\log_6 16 = 4 \log_6 2 = \frac{4}{\log_2 6} =$$

$$= \frac{4}{\log_2 2 + \log_2 3} = \frac{6}{1 + \log_2 3}.$$

Теперь преобразуем данное в условии выражение:

$$a = \log_{12} 27 = 3 \log_{12} 3 =$$

$$= \frac{3}{\log_3 12} = \frac{3}{\log_3 3 + 2 \log_3 2} =$$

$$= \frac{3}{1 + 2 \log_3 2} = \frac{3}{1 + \frac{2}{\log_3 3}} = \frac{3 \log_2 3}{2 + \log_2 3}.$$

Таким образом, $a = \frac{3 \log_2 3}{2 + \log_2 3}$, откуда

$$\log_2 3 = \frac{2a}{3-a} \ (a \neq 3).$$

Тогда
$$\log_6 16 = \frac{4}{1 + \log_2 3} = \frac{4}{1 + \frac{2a}{3-a}} = \frac{4(3-a)}{3+a}.$$

OTBET:
$$\frac{4(3-a)}{3+a}$$
.

Пример 1.888. Пусть a и b — длины катетов прямоугольного треугольника, c — длина гипотенузы, $c - b \neq 1$, $c + b \neq 1$.

Доказать, что

$$\log_{c+b} a + \log_{c-b} a = 2 \log_{c+b} a \cdot \log_{c-b} a$$
.

Pewenue. Если a = 1, то равенство выполняется, поскольку все слагаемые, входящие в него, равны нулю.

Рассмотрим случай, когда $a \neq 1$. По теореме Пифагора $c^2 - b^2 = a^2$, или (c - b) $(c + b) = a^2$ и, поскольку a > 0, $a \neq 1$, то

$$\log_a (c - b) + \log_a (c + b) = \log_a a^2$$

откуда

$$\frac{1}{\log_{c-b} a} + \frac{1}{\log_{c+b} a} = 2,$$

или $\log_{c+b} a + \log_{c-b} a = 2 \log_{c-b} a \cdot \log_{c+b} a$, что и требовалось доказать.

Упражнения

Вычислить:

1.889.
$$27^{1 + \log_3 2}$$
.

1.890.
$$\sqrt{10^{2+\frac{1}{2} \log 16}}$$
.

1.891.
$$5^{\log_{\sqrt{3}} 4 + 2 \log_5 3}$$

1.892.
$$\sqrt{25^{\frac{1}{\log_6 5}} + 49^{\frac{1}{\log_6 7}}}$$
.

$$1.893. 81^{\frac{1}{\log_5 3}} + 3^{\log_9 36} + 3^{\frac{4}{\log_7 9}}.$$

1.894.
$$-\log_2\log_2\sqrt{\sqrt[4]{2}}$$
.

1.895.
$$36^{\log_6 5} + 10^{1 - \log_2 2} - 3^{\log_9 36}$$
.

Найти значение логарифма:

1.896. Найти
$$\log_{\sqrt{3}} \sqrt[6]{a}$$
, если $\log_a 27 = b$.

1.897. Найти
$$\log_{49}$$
 16, если \log_{14} 2 = a .

- **1.898.** Вычислить $\log_{\frac{1}{4}} (\log_2 3 \cdot \log_3 4)$.
- 1.899. Найти $\log_{abcd} x$, если $\log_a x = \alpha$, $\log_b x = \beta$, $\log_c x = \gamma$, $\log_d x = \delta$ и $x \neq 1$.
 - 1.900. Найти \log_{30} 8, если $\lg 5 = a$, $\lg 3 = b$.
 - 1.901. Найти $\log_9 20$, если $\lg 2 = a$, $\lg 3 = b$.
 - **1.902.** Найти \log_6 **16**, если \log_{12} 2 = a.
 - 1.903. Найти $\log_3 5$, если $\log_6 2 = a$, $\log_6 5 = b$.
 - 1.904. Найти $\log_{35} 28$, если $\log_{14} 7 = a$, $\log_{14} 5 = b$.
 - **1.905.** Вычислить $\log_3 4 \cdot \log_4 5 \cdot \log_5 7 \cdot \log_7 9$.
 - 1.906. Вычислить

- **1.907.** При каких x числа $\lg 2$, $\lg (2^x 1)$, $\lg (2^x + 3)$ являются тремя последовательными членами арифметической прогрессии?
- **1.908.** Вычислить $\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \ldots \cdot \log_{10} 9$, если известно, что $\lg 2 = 0.3010$.
 - 1.909. Проверьте равенство

 $\log_{0.5} \sin 70^{\circ} + \log_{0.5} \sin 50^{\circ} + \log_{0.5} \sin 10^{\circ} = 3.$

Решение систем показательных и логарифмических уравнений

Пример 1.910. Решить систему уравнений

$$\begin{cases} \log_x y - 4 \log_y x = 3, \\ y^2 - 2x^3 = 0. \end{cases}$$

Решение. Из первого уравнения системы следует, что искомые значения x и y должны удовлетворять условиям: x > 0, y > 0, $x \ne 1$, $y \ne 1$.

При таких условиях первое уравнение системы равносильно уравнению

$$\log_x y - \frac{4}{\log_x y} = 3,$$

или

$$\log_x^2 y - 3 \log_x y - 4 = 0,$$

откуда $\log_x y = 4$ и $\log_x y = -1$ или $y = x^4$ и $y = x^{-1}$. Поэтому данная система уравнений равносильна совокупности двух систем уравнений:

$$\begin{cases} y = x^4, \\ y^2 - 2x^3 = 0 \end{cases} \quad \text{if} \quad \begin{cases} y = x^{-1}, \\ y^2 - 2x^3 = 0. \end{cases}$$

Решая эти системы уравнений и учитывая, что $x \neq 0$, $y \neq 0$, получаем искомые решения данной системы:

$$x_1 = \sqrt[5]{2}$$
, $y_1 = \sqrt[5]{16}$, $x_2 = \frac{1}{\sqrt[5]{2}}$, $y_2 = \sqrt[5]{6}$

OTBET:
$$(\sqrt[5]{2}; \sqrt[5]{16}), \left(\frac{1}{\sqrt[5]{2}}; \sqrt[5]{2}\right).$$

Пример 1.911. Решить систему уравнений

$$\begin{cases} x^{x+y} = y^{x-y}, \\ x^2y = 1. \end{cases}$$

Peшение. Из второго уравнения системы найдем $y = x^{-2}$ и подставим его в первое уравнение. Получим

$$x^{x+x^2} = x^{-2(x+x^2)}$$
, или $x^{x+\frac{1}{x^2}} = x^{-2x+\frac{2}{x^2}}$.

Решим полученное уравнение.

- a) x = -1; проверяем: $(-1)^{-1+1} = (-1)^{2+2}$, 1 = 1, $x_1 = -1$;
- б) x = 0; проверяем: $0^{0 + \frac{1}{0}} = 0^{0 + \frac{2}{0}}$ не имеет смысла;
- 8) x = 1; $1^2 = 1^0$, 1 = 1, $x_2 = 1$

г)
$$x + \frac{1}{x^2} = -2x + \frac{2}{x^2}$$
, или $3x^3 - 1 = 0$, $x_3 = \frac{1}{\sqrt[3]{3}}$.

Зная x, находим соответствующие значения y из уравнения $y=x^{-2}$, $y_1=1$, $y_2=1$, $y_3=\sqrt[3]{9}$. Проверкой убеждаемся, что найденные значения x и y являются решениями системы.

Ответ: (-1; 1); (1; 1);
$$\left(\frac{1}{\sqrt[3]{3}}; \sqrt[3]{9}\right)$$

Пример 1.912. Решить систему уравнений

$$\begin{cases} 2^x \cdot 3^y = 24, \\ 2^y \cdot 3^x = 54. \end{cases}$$

Решение. Перепишем данную систему уравнений в виде

$$\begin{cases} 2^x \cdot 3^y = 2^3 \cdot 3, \\ 2^y \cdot 3^x = 2 \cdot 3^3. \end{cases}$$

Перемножив почленно уравнения системы, имеем

$$2^{x+y} \cdot 3^{x+y} = 2^4 \cdot 3^4$$
, или $6^{x+y} = 6^4$,

откуда

$$x + y = 4. \tag{*}$$

Разделив уравнения системы почленно, получим

$$2^{x-y}\cdot 3^{y-x}=2^2\cdot 3^{-2}$$
, или $\left(\frac{2}{3}\right)^{x-y}=\left(\frac{2}{3}\right)^2$,

откуда

$$x-y=2. \tag{**}$$

Рещение исходной системы уравнений сводится к решению равносильной ей системы, состоящей из полученных уравнений (*) и (**):

$$\begin{cases} x+y=4, \\ x-y=2. \end{cases}$$

Решением этой системы является пара чисел: x = 3, y = 1.

Ответ: (3, 1).

Пример 1.913. Решить систему уравнений

$$\begin{cases} x^{\lg y} = 100, \\ \log_y x = 2. \end{cases}$$

Решение. Искомые значения x и y должны удовлетворять условиям $x \ge 0, \ y \ge 0, \ x \ne 1, \ y \ne 1$. После преобразования получим систему

$$\begin{cases} \lg y \lg x = 2, \\ x = y^2, \end{cases} \text{ откуда } \begin{cases} \lg y \cdot \lg y^2 = 2, \\ x = y^2, \end{cases} \text{ или } \begin{cases} \lg^2 y = 1, \\ x = y^2. \end{cases}$$

Имеем

$$\begin{cases} \lg y = \pm 1, \\ x = y^2. \end{cases} \quad y_1 = 0.1.$$

Тогда $x_1=0.01$, $y_2=10$, $x_2=100$. Найденные пары значений являются решениями данной системы. Проверкой убеждаемся в этом.

Ответ: (0.01; 0.1); (100; 10).

Упражнения

Решить систему уравнений:

1.914.
$$\begin{cases} 3^{y} \cdot 9^{x} = 81, \\ \lg (y + x)^{2} - \lg x = 2 \lg 3. \end{cases}$$

1.915.
$$\begin{cases} \log_4 x + \log_4 y = 1 + \log_4 9, \\ x + y - 20 = 0. \end{cases}$$

Решить систему уравнений:

1.914.
$$\begin{cases} 3^{y} \cdot 9^{x} = 81, \\ \lg (y + x)^{2} - \lg x = 2 \lg 3. \end{cases}$$
1.915.
$$\begin{cases} \log_{4} x + \log_{4} y = 1 + \log_{4} 9, \\ x + y - 20 = 0. \end{cases}$$
1.916.
$$\begin{cases} 10^{1 + \lg (x + y)} = 50, \\ \lg (x - y) + \lg (x + y) = 2 - \lg 5. \end{cases}$$

1.917.
$$\begin{cases} 2^{\frac{x-y}{2}} + 2^{\frac{y-x}{2}} = 2.5, \\ \lg (2x-y) + 1 = \lg (y+2x) + \lg 6. \end{cases}$$
1.918.
$$\begin{cases} 2 - \log_2 y = 2 \log_2 (x+y), \\ \log_2 (x+y) + \log_2 (x^2 - xy + y^2) = 1. \end{cases}$$

1.918.
$$\begin{cases} 2 - \log_2 y = 2 \log_2 (x + y), \\ \log_2 (x + y) + \log_2 (x^2 - xy + y^2) = 1. \end{cases}$$

1.919.
$$\begin{cases} x^{2y^2-1} = 5, \\ x^{y^2+2} = 125. \end{cases}$$

1.920.
$$\begin{cases} 4^{x+y} = 2^{y-x}, \\ 4^{\log_{\sqrt{2}} x} = y^4 - 5. \end{cases}$$

1.921.
$$\begin{cases} 2^{x} \cdot 3^{y} = 6, \\ 3^{x} \cdot 4^{y} = 12. \end{cases}$$

1.922.
$$\begin{cases} y = 1 + \log_4 x, \\ x^y = 4^6. \end{cases}$$

249.
$$\begin{cases} y^{x^2-7x+12} &= 1, \\ x+y=6. \end{cases}$$

250.
$$\begin{cases} 5^{x} \cdot 8^{y} = 512\ 000, \\ x + y = 7. \end{cases}$$

252.
$$\begin{cases} 2^{x}(x+y) = 10, \\ \sqrt[x]{x+y} = 5. \end{cases}$$

254.
$$\begin{cases} 2^{y} \cdot 3^{y} = 24, \\ 2^{y} \cdot 3^{x} = 54. \end{cases}$$

256.
$$\begin{cases} x^{2y-1} = 5, \\ x^{y+2} = 3. \end{cases}$$

258.
$$\sqrt[x]{3} \cdot \sqrt[y]{1.5} = 0.25,$$
 $\sqrt[x]{5} : \sqrt[y]{0.2} = 1.$

260.
$$\begin{cases} 8^{2x+1} = 32 \cdot 2^{4y-1}, \\ 5 \cdot 5^{x-y} = \sqrt{25^{2y+1}}. \end{cases}$$

$$282. \begin{cases} xy = y^x, \\ x^2 = y^2. \end{cases}$$

264.
$$\begin{cases} 3^{x} - 2^{2y} = 77, \\ \sqrt{3^{x}} - 2^{y} = 7. \end{cases}$$

266.
$$\begin{cases} 9 \cdot 5^{x} + 7 \cdot 2^{x+y} = 457, \\ 6 \cdot 5^{x} - 14 \cdot 2^{x+y} = -890. \end{cases}$$

$$\begin{cases}
\frac{\lg (x + y) - \lg 5}{\lg x + \lg y - \lg 6} = 1, \\
\frac{-\lg x}{\lg (x + 6) - (\lg y + \lg 6)} = 1.
\end{cases}$$

277.
$$\begin{cases} \lg (x^2 + y^2) - 1 = \lg 13, \\ \lg (x + y) - \lg (x - y) = 3 \lg 2. \end{cases}$$

278.
$$\begin{cases} \lg (x - y) - 2\lg 2 = 1 - \lg (x + y), \\ \lg x - \lg 3 = \lg 7 - \lg y. \end{cases}$$

279.
$$\begin{cases} \log_4 x - \log_2 y = 0, \\ x^2 - 5y^2 + 4 = 0. \end{cases}$$
 280.
$$\begin{cases} \log_v u + \log_x v = 2, \\ u^2 + v = 12. \end{cases}$$

281.
$$\begin{cases} \log_{xy} (x - y) = 1, \\ \log_{xy} (x + y) = 0. \end{cases}$$

283.
$$\begin{cases} xy = 40, \\ x^{1gy} = 4. \end{cases}$$

251.
$$\begin{cases} \sqrt[x]{y} = 2, \\ y^x = 16. \end{cases}$$

253.
$$\begin{cases} \sqrt[x]{x+y} = 2, \\ (x+y) \cdot 3^x = 279\,936. \end{cases}$$

255.
$$\begin{cases} 3^{x} \cdot 5^{y} = 75, \\ 3^{y} \cdot 5^{x} = 45, \end{cases}$$

257.
$$\begin{cases} x^y = 9, \\ \sqrt[3]{324} = 2x^2. \end{cases}$$

259.
$$\begin{cases} x^y = 256. \\ 2 \sqrt[3]{81^2} = 3x. \end{cases}$$

261.
$$\begin{cases} \sqrt[7]{4^x} = 32 \sqrt[x]{8^y}, \\ \sqrt[y]{3^x} = 3 \sqrt[x]{9^{1-y}}. \end{cases}$$

263.
$$\begin{cases} x - \sqrt[y]{x + y} = 2 \sqrt{3}, \\ (x + y) \cdot 2^{y - x} = 3. \end{cases}$$

265.
$$\begin{cases} 64^{2x} + 64^{2y} = 12, \\ 64^{x+y} = 4 \sqrt{2}, \end{cases}$$

267.
$$\begin{cases} x^{2y} = 16 + 6 \cdot x^y, \\ x^{2y} + 5 = y \cdot x^y + 5y^z. \end{cases}$$

280.
$$\log_v u + \log_x v = 2,$$

$$u^t + v = 12$$

282.
$$\begin{cases} 3^{x} \cdot 2^{y} = 576, \\ \log_{\sqrt{2}} (y - x) = 4. \end{cases}$$

234.
$$\begin{cases} \lg^2 x + \lg^2 y = 7, \\ \lg x - \lg y = 2. \end{cases}$$

1.923.
$$\begin{cases} \log_{x} (3x + 2y) = 2, \\ \log_{y} (2x + 3y) = 2. \end{cases}$$
1.924.
$$\begin{cases} \log_{xy} \frac{y}{x} - \log_{y}^{2} x = 1, \\ \log_{2} (y - x) = 1. \end{cases}$$
1.925.
$$\begin{cases} \log_{y} x + \log_{x} y = 2, \\ x^{2} - y = 20. \end{cases}$$

Решение показательных неравенств

Решение простейших показательных неравенств основывается на использовании свойств монотонности показательной функции.

Рассмотрим решение простейших показательных неравенств.

- 1. Неравенство $a^x > c$, где a > 0, $a \ne 1$:
- а) если $c \le 0$, то неравенство выполняется при произвольном значении x (поскольку для любого значения $x = a^x > 0$);
- $a^x > a^{\log_a c}$, получим:

если
$$a > 1, x > \log_a c$$
,
если $0 < a < 1$, $x < \log_a c$.

- 2. Неравенство $a^x < c$, где a > 0, $a \neq 1$:
- a) если $c \le 0$, то неравенство не имеет решения;
- σ) если c>0, то, записав неравенство в виде $a^x < a^{\log_{\sigma} c}$, получим:

если
$$a > 1, x < \log_a c$$
,
если $0 < a < 1$, $x > \log_a c$.

Пример 1.926. Решить неравенство $\frac{0.2^{x+0.5}}{\sqrt{5}} > \frac{0.04^x}{25}$.

решение. Запишем неравенство в виде

$$\frac{5^{-x-0.5}}{5^{0.5}} > \frac{5^{-2x}}{5^2}$$
, или $5^{-x-1} > 5^{-2x-2}$,

откуда
$$-x-1 > -2x-2$$
, $x > -1$.
Ответ: $x > -1$.

Пример 1.927. Решить неравенство $1 < 5^{1-\frac{1}{2}x} < 25$.

Решение. Поскольку $5^0 < 5^{1-\frac{1}{2}x} < 5^2$, то

$$0 < 1 - \frac{1}{2} x < 2, -2 < \frac{1}{2} x - 1 < 0, -1 < \frac{1}{2} x < 1,$$

откуда -2 < x < 2.

Ответ: -2 < x < 2.

Пример 1.928. Решить неравенство 0.5^{x^2} > 3.

Решение. Имеем $0.5^{x^2-x} > 0.5^{\log_{0.5} 3}$, откуда

$$x^2 - x + \log_2 3 < 0.$$

Полученное неравенство не имеет решений, поскольку дискриминант трехчлена в левой части неравенства отрицателен.

Ответ: нет решений.

Пример 1.929. Решить неравенство

$$\frac{15}{2^x+1}+\frac{4}{2^{x-1}-3}>\frac{12}{2^{x+1}}.$$

Решение. Запишем данное неравенство в виде

$$\frac{15}{2^x+1}+\frac{8}{2^x-6}>\frac{6}{2^x}.$$

Обозначим $2^x = y$. Очевидно, что y > 0. Получим

$$\frac{15}{y+1} + \frac{8}{y-6} > \frac{6}{y}$$

Решая неравенство

$$\frac{15}{y+1} + \frac{8}{y-6} - \frac{6}{y} > 0,$$

имеем

$$\frac{17y^2-52y+36}{y(y+1)(y-6)}>0,$$

или
$$(17y^2 - 52y + 36) y (y + 1) (y - 6) > 0.$$

Определим промежутки знакопостоянства (рис. 1.38) при y > 0:

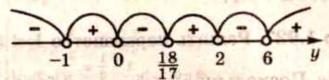


Рис. 1.38

a) -1 < y < 0 не удовлетворяет;

6)
$$\frac{18}{17} < y < 2, y > 6.$$

Возвращаясь к подстановке, получаем

1)
$$\frac{18}{17} < 2^x < 2;$$
 2) $2^x > 6;$ $2^{\log_2 \frac{18}{17}} < 2^x < 2;$ $2^x > 2^{\log_2 6};$ $\log_2 \frac{18}{17} < x < 1.$ $x > \log_2 6.$

OTBET: $\log_2 \frac{18}{17} < x < 1$; $\alpha > \log_2 6$.

Пример 1.930. Решить неравенство

$$3^{2x+5} \le 3^{x+2} + 2.$$

Решение. Запишем неравенство в виде

Обозначив $3^{x+2} = y$ (y > 0), прийдем к неравенству $3y^2 \le y + 2$, $3y^2 - y - 2 \le 0$, $(y-1)(3y+2) \le 0$.

Определим промежутки знакопостоянства (рис. 1.39). Имеем $-\frac{2}{3} \le y \le 1$. Возвращаясь к подстановке, получаем $-\frac{2}{3} \le 3^{x+2} \le 1$. Однако неравенство $3^{x+2} \ge -\frac{2}{3}$ удо-

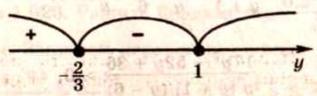


Рис. 1.39

влетворяется при любом действительном x. Тогда решением данного неравенства будет $3^{x+2} \le 3^0$, откуда $x+2 \le 0$, $x \le -2$.

OTBET: $x \le -2$.

Пример 1.931. Решить неравенство $12^x + 5^x > 13^x$. Решение. Обе части неравенства разделим на $13^x > 0$:

$$\left(\frac{12}{13}\right)^x + \left(\frac{5}{13}\right)^x > 1.$$

Каждая из функций $\left(\frac{12}{13}\right)^x$ и $\left(\frac{5}{13}\right)^x$ определена на множестве действительных чисел. Кроме того, обе они монотонно убывающие. Поэтому функция

$$f(x) = \left(\frac{12}{13}\right)^x + \left(\frac{5}{13}\right)^x - 1$$

является монотонно убывающей.

Поскольку f(2) = 0, то x = 2 — единственный корень функции f(x) и, таким образом, f(x) > 0 при x < 2.

Ответ: x < 2.

Решение неравенства $(f(x))^{\phi(x)} > 1$ сводится к решению двух систем:

$$\begin{cases} f(x) > 1, & 0 < f(x) < 1, \\ \phi(x) > 0 & \phi(x) < 0. \end{cases}$$

Решение неравенства $(f(x))^{\phi(x)} < 1$ сводится к решению таких систем:

$$\begin{cases} f(x) > 1, & 0 < f(x) < 1, \\ \varphi(x) < 0 & \varphi(x) > 0. \end{cases}$$

Пример 1.932. Решить неравенство

$$(x-2)^{x^2-6x+8} > 1.$$

Решение. Используя монотонность показательной функции, заменим данное неравенство равносильной совокупностью двух систем:

a)
$$\begin{cases} x-2>1, & \delta \\ x^2-6x+8>0; \end{cases} \begin{cases} 0 < x-2 < 1, \\ x^2-6x+8<0. \end{cases}$$

является неравенство x >

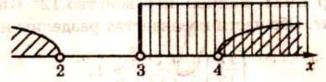


Рис. 1.40

Решением системы δ) $\begin{cases} 2 < x < 3, \\ (x - 4)(x - 2) < 0 \end{cases}$ (рис. является неравенство 2 < x < 3.

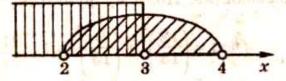


Рис. 1.41

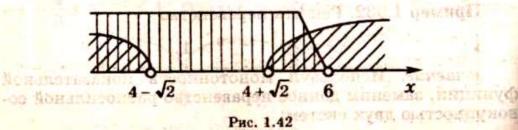
OTBET: 2 < x < 3; x > 4Пример 1.933. Решить неравенство

$$(x^2 - 8x + 15)^{x-6} < 1.$$

Решение. Используя монотонность показательной функции, заменим данное неравенство равносильной со-

a)
$$\begin{cases} x^2 - 8x + 15 > 1, \\ x - 6 < 0; \end{cases}$$
 b) $\begin{cases} 0 < x^2 - 8x + 15 < 1, \\ x - 6 > 0. \end{cases}$ Решением системы a) $\begin{cases} x^2 - 8x + 14 > 0, \\ x < 6 \end{cases}$ (рис. 1.42) яв-

ляются все значения х, удовлетворяющие неравенствам



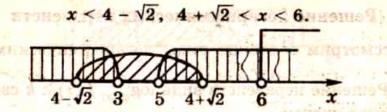


Рис. 1.43

Решая систему
$$\delta$$
) $\begin{cases} x^2-8x+14<0, \\ x^2-8x+15>0, \text{ (рис. 1.43), дела-} \\ x>6 \end{cases}$

ем вывод, что система несовместна.

OTBET:
$$x < 4 - \sqrt{2}$$
; $4 + \sqrt{2} < x < 6$.

Упражнения

Решить неравенство:

1.934.
$$2^{3-6x} > 1$$
.

1.935.
$$\left(\frac{1}{3}\right)^{\sqrt{x+2}} > 3^{-x}$$
.

1.936.
$$0.1^{4x^2-2x-2} \le 0.1^{2x-3}$$
.

1.937.
$$2^x + 2^{1-x} - 3 < 0$$
.

$$1.938. \ x^2 \cdot 5^x - 5^{2+x} < 0.$$

1.939.
$$4^{x+1} - 16^x < 2 \log_4 8$$
.

1.940.
$$3^{\frac{x-3}{3x-2}} < \frac{1}{3}$$
.

1.941.
$$0.5^{x-2} > 6$$
.

1.942.
$$\frac{1}{3^x+5} < \frac{1}{3^{x+1}-1}$$

1.943.
$$0.5^x \le 0.25^{x^2}$$

1.943.
$$0.5^x \le 0.25^{x^2}$$
.
1.944. $1 < 3^{|x^2 - x|} < 9$.

1.945.
$$|2^{4x^2-1}-5| \leq 3$$
.

1.946.
$$2^{1-2^{\frac{1}{5}}} < 0.125^{\circ}$$
.

1.947.
$$4^x - 2 \cdot 5^{2x} - 10^x > 0$$
.

1.948.
$$(x+5)^{x^2-4x+3} > 1$$
.

1.949.
$$(x+3)^{x^2-5x+4} \le 1$$
.

Решение логарифмических неравенств

Рассмотрим основные виды логарифмических неравенств.

1. Решение неравенств вида $\log_{\phi(x)} f(x) \ge k$ сводится к решению систем

a)
$$\begin{cases} \varphi(x) > 1, \\ f(x) \ge \varphi^k(x); \end{cases}$$
 6)
$$\begin{cases} 0 < \varphi(x) < 1, \\ 0 < f(x) \le \varphi^k(x). \end{cases}$$

2. Решение неравенств вида $\log_{\phi(x)} f(x) \le k$ сводится к решению систем

a)
$$\begin{cases} \varphi(x) > 1, & \delta \end{cases} \begin{cases} 0 < \varphi(x) < 1, \\ f(x) \ge \varphi^k(x). \end{cases}$$

3. Решение неравенств вида затывания втимач

$$\log_{\phi(x)} f(x) \ge \log_{\phi(x)} h(x)$$

сводится к решению двух систем:

a)
$$\begin{cases} \varphi(x) > 1, \\ f(x) \ge h(x) > 0; \end{cases}$$
 b) $\begin{cases} 0 < \varphi(x) < 1, \\ 0 < f(x) \le h(x). \end{cases}$

4. Решение неравенств вида

$$\log_{\varphi(x)} f(x) \le \log_{\varphi(x)} h(x)$$

сводится к решению двух систем:

a)
$$\begin{cases} \varphi(x) > 1, \\ 0 < f(x) \le h(x); \end{cases}$$

$$\begin{cases} 0 < \varphi(x) < 1, \\ f(x) \ge h(x), \\ h(x) > 0. \end{cases}$$

Пример 1.950. Решить неравенство

$$\log_8 (x^2 - 4x + 3) < 1.$$

Решение. Пользуясь свойством логарифмической функции, получаем, что данное неравенство равносильно неравенству $0 < x^2 - 4x + 3 < 8$, то есть

$$\begin{cases} x^2 - 4x + 3 < 8, & \begin{cases} x^2 - 4x - 5 < 0, \\ x^2 - 4x + 3 > 0, \end{cases} & \begin{cases} x^2 - 4x - 5 < 0, \\ x^2 - 4x + 3 > 0. \end{cases}$$

Решим эти неравенства (рис. 1.44).

OTBET:
$$3 < x < 5$$
; $-1 < x < 1$.

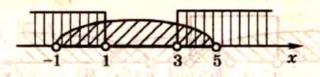


Рис. 1.44

Пример 1.951. Решить неравенство $\log_{\frac{1}{3}} \frac{x^2 + 4x}{2x - 3} < 1$.

 Решение.
 Это неравенство равносильно неравенству

 $\frac{x^2 + 4x}{2x - 3} > \frac{1}{3}$.

Решая неравенство $\frac{x^2 + 4x}{2x - 3} > \frac{1}{3}$, получаем

$$\frac{3x^2+12x-2x+3}{3(2x-3)}>0$$
, или $\frac{3x^2+10x+3}{2x-3}>0$,

откуда
$$\frac{(x+3)(3x+1)}{2x-3} > 0.$$

Решив данное неравенство методом интервалов, получим ответ.

OTBET:
$$-3 < x < -\frac{1}{3}$$
; $x > \frac{3}{2}$.

Пример 1.952. Решить неравенство

$$\log_{(x-2)}(x^2-8x+15)>0.$$

Решение. Это неравенство равносильно таким двум системам неравенств:

a)
$$\begin{cases} x-2 > 1, \\ x^2-8x+15 > 1; \end{cases}$$
 6) $\begin{cases} 0 < x-2 < 1, \\ 0 < x^2-8x+15 < 1. \end{cases}$

Решением системы a) $\begin{cases} x > 3, \\ x^2 - 8x + 14 > 0 \end{cases}$ (рис. 1.45) являются все значения x, удовлетворяющие неравенству $x > 4 + \sqrt{2}$.

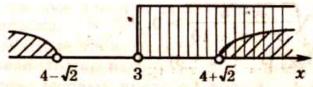


Рис. 1.45

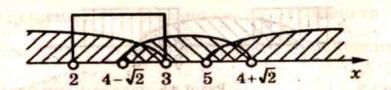


Рис. 1.46

Решением системы б)
$$\begin{cases} 2 < x < 3, \\ x^2 - 8x + 15 > 0, \text{ (рис. 1.46)} \\ x^2 - 8x + 14 < 0 \end{cases}$$

являются все значения х, удовлетворяющие неравенству

Peutes replieved
$$4 - \sqrt{2} < x < 3$$
. The replieve of the second second

OTBET:
$$x > 4 + \sqrt{2}$$
; $4 - \sqrt{2} < x < 3$.

Упражнения

Решить неравенство:

1.953.
$$\log_{\frac{1}{3}}(5x-1) > 0$$
.

1.954.
$$\log_5 (3x - 1) < 1$$
.

1.955.
$$\log_{0.5}(x^2 - 5x + 6) > -1$$
.

1.956.
$$\log_3 \frac{1-2x}{x} \le 0$$
.

1.957.
$$\log_{0.5}^2 x + \log_{0.5} x - 2 \le 0$$
.

1.958.
$$\log_2 x \le \frac{2}{\log_2 x - 1}$$
.

1.959.
$$\frac{\lg^2 x - 3 \lg x + 3}{\lg x - 1} < 1.$$

1.960.
$$\log_{0.2}(x^2-x-2) > \log_{0.2}(-x^2+2x+3)$$
.

1.961.
$$\frac{\log_2(x+1)}{x-1} > 0$$
.

$$1.962. \sqrt{\frac{x-5}{7x-x^2-10}}>0.$$

1.963.
$$\log_8 (x^2 - 4x + 3) < 1$$
.

1.964.
$$\log_2 \log_2 \frac{x-1}{2-x} > -1$$
.

1.965.
$$\frac{\lg^2 x + \lg x - 6}{\lg x} > 0.$$

1.966.
$$\log_{x-2} (x^2 - 8x + 15) > 0$$
.

1.967.
$$\log_{x^2-6x+8}(x-4) > 0$$
.

1.968.
$$x^{\lg (x^2-6x+5)} > 1$$
.

1.969.
$$\log_x (x^2 - 2x - 3) > 0$$
.

1.970.
$$\log_{3-x}(x-2.5) > 0.$$

1.971.
$$\log_{0.2}^2 (x-1) > 4$$
.

1.972.
$$(x-1) \log_2 (x^2-4x+3) < 0$$
.

1.973.
$$\log_3 x + \log_{\sqrt{3}} x + \log_{\frac{1}{3}} x < 6$$
.

1.974.
$$\log_4(x+7) > \log_2(x+1)$$
.

1.975.
$$2^{\log_{0.5}^2 x} + x^{\log_{0.5} x} > 2.5$$
.

1.976.
$$\log_{\frac{1}{5}} x + \log_4 x > 1$$
.