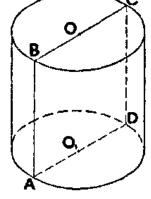


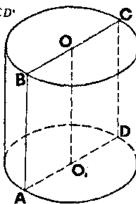
МАТЕМАТИКА. ПРАКТИЧЕСКИЙ КУРС В ПОМОЩЬ ПОВТОРЯЮЩИМ МАТЕМАТИКУ ПО СПРАВОЧНИКАМ

СТЕРЕОМЕТРИЯ

- *часть 4. Содержание* 1. Цилиндр. Поверхность и объём цилиндра.
- 2. Конус. Поверхность и объём конуса. Тела вращения.
- 3. Задачи текстовые разные.
- 4. Комбинация геометрических тел.
- 5. Комбинация призмы с вписанным шаром.
- 6. Комбинация призмы с описанным шаром.
- 7. Комбинация пирамиды с вписанным шаром.
- 8. Комбинация пирамиды с описанным шаром.
- 9. Задачи разные на комбинации геометрических тел с шаром.

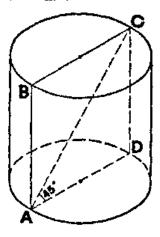

20. Цилиндр. Поверхность и объем цилиндра

Задача 361.


Дано: прямой круговой цилиндр,

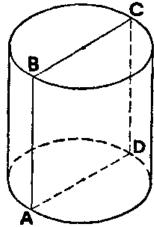
 $S_{\delta}:S_{och}=\frac{1}{2}.$

Найдите: $\frac{H}{2R}$.


Задача 362.

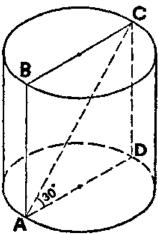
Задача 363.

Дано: прямой круговой цилиндр, ABCD — осевое сечение, $\angle CAD = 45^{\circ}, \ V = 2\pi.$


Найдите: S_6 .

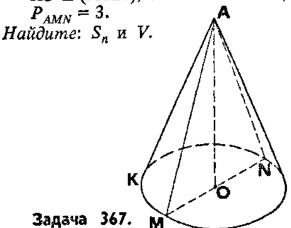
Задача 364.

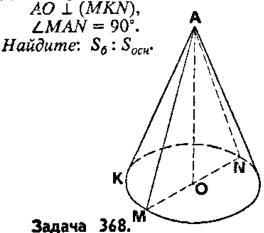
Дано: прямой круговой цилиндр, ABCD — осевое сечение, в которое вписана окружность единичного радиуса.


Найдите: V.

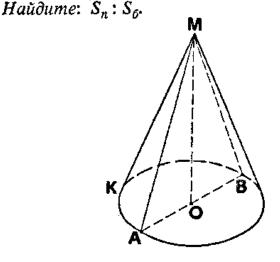
Задача 365.

Дано: прямой круговой цилиндр, ABCD — осевое сечение, $V = 6\pi$, $\angle CAD = 30^{\circ}$.


 $Ha\overline{u}\partial ume$: S_{ABCD} .

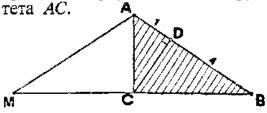

21. Конус. Поверхность и объем конуса

Задача 366.


Дано: прямой круговой конус, $AO \perp (MKN)$, MA = MN = AN,

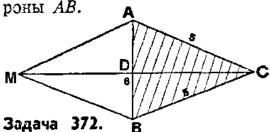
Дано: прямой круговой конус,

Дано: прямой круговой конус, $MO \perp (AKB)$, $\angle AMB = 120^\circ$.



22. Тела вращения

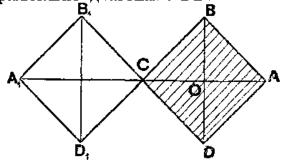
Задача 370.


Дано: $\triangle ABC$, $\angle ACB = 90^{\circ}$, $CD \perp AB$, AD = 1, DB = 4.

Найдите объем тела, полученного от вращения треугольника вокруг ка-

Задача 371.

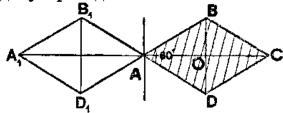
Дако: $\triangle ABC$, AC = BC = 5, AB = 6. Найдите объем тела, образованного вращением треугольника вокруг сто-


Найдите поверхность тела, образованного вращением трапеции вокруг стороны AD.

Задача 373.

Дано: ABCD — квадрат, AB = 1. Найдите объем тела, образованного

вращением квадрата вокруг оси, проходящей через вершину C па-


раллельно диагонали *BD*.

Задача 374.

Дано: $ABCD \rightarrow pomb$, $\angle BAD = 60^\circ$, $P_{ABCD}=16.$

Найдите объем тела, образованного вращением ромба вокруг оси, проходящей через вершину A перпендикулярно диагонали АС.

23. Задачи разные

Задача 375.

Радиус основания цилиндра 3, высота 8. Найти диагональ осевого сечения.

Задача 376.

Осевое сечение цилиндра — квадрат, площадь которого 12. Найти площадь основания.

Задача 377.

Высота цилиндра 7, радиус основания 5. Найти площадь сечения, проведенного параллельно оси цилиндра на расстоянии 3 от нее.

Задача 378.

Высота цилиндра 12, радиус основания 10. Цилиндр этот пересечен плоскостью параллельно оси так, что в сечении получился квадрат. Найти расстояние этого сечения от оси.

Задача 379.

В цилиндре пробедена параллельно оси плоскость, отсекающая от окружности основания дугу в 120°. Длина оси равна 5, ее расстояние от секущей плоскости 2. Определить площадь сечения.

Задача 380.

Плещадь основания цилиндра относится к площади осевого сечения, как π :4. Найти угол между диагоналями осевого сечения.

Задача 381.

Высота цилиндра на 10 больше радиуса основания, а полная поверхность равна 144 л. Определить радиус основания и высоту.

Задача 382.

Радиус основания конуса 5, высота 12. Найти образующую.

Задача 383.

Образующая конуса 10 наклонена к плоскости основания под углом в 30°. Найти радиус основания.

Задача 384.

Радиус основания конуса 3. Осевым сечением служит прямоугольный треугольник. Найти его площадь.

Задача 385.

Высота конуса 20, радиус его основания 25. Найти площадь сечения, проведенного через вершину, если его расстояние от центра основания конуса равно 12.

Задача 386.

Через вершину конуса под углом в 45° к основанию проведена плоскость. отсекающая четверть окружности основания. Высота конуса равна 2. Найти площадь сечения.

Задача 387.

Высота конуса 4, радиус основания 3, боковая поверхность конуса развернута на плоскость. *Найти* угол полученного сектора.

Задача 388.

Полукруг свернут в коническую поверхность. *Найти* угол между образующей и высстой конуса.

Задача 389.

Радиусы оснований усеченного конуса 3 и 6, высота 4. *Найти* образующую.

Задача 390.

Радиусы оснований усеченного конуса *R* и *r*, образующая наклонена к основанию под углом в 45°. Найти высоту.

Задача 391.

Радиусы оснований усеченного конуса 11 и 16, образующая 13. *Найти* расстояние от центра меньшего основания до окружности большего.

Задача 392.

Радиусы оснований усеченного конуса 3 и 7, образующая 5. *Найти* плошаль осевого сечения.

Задача 393.

В усеченном конусе высота 10, а радиусы оснований 8 и 18. На каком расстоянии от меньшего основания находится параллельное сечение, площадь которого есть средняя пропорциональная между площадями оснований?

Задача 394.

Радиус шара равен 12. Точка находится на касательной плоскости на расстоянии 16 от точки касания. Найти ее кратчайшее расстояние от поверхности шара.

Задача 395.

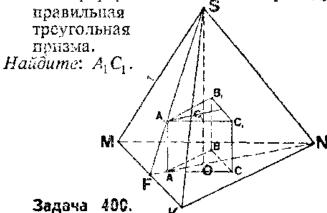
Радиус шара 4. Через конец радиуса проведена плоскость под углом в 60° к нему. Найти площадь сечения.

Задача 396.

Стороны треугольника 13, 14, 15. Найти расстояние от плоскости треугольника до центра шара, касательного к сторонам треугольника. Радиус шара 5.

Зацача 397.

Диагонали ромба 15 и 20. Шаровая поверхность касается всех его сторон. Радиус шара 10. Найти расстояние его центра от плоскости ромба.

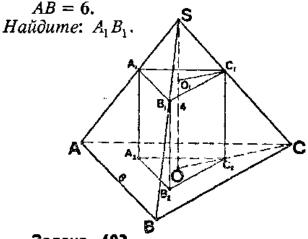

Задача 398.

На шар, радиус которого 5, наложен ромб так, что каждая сторона его, равная 6, касается шара. Расстояние плескости ромба от центра шара 4. Найти площадь ромба.

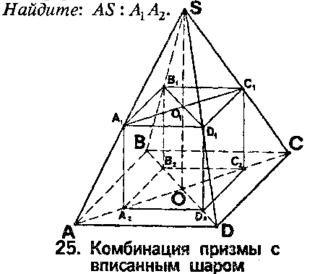
24. Комбинация геометрических тел

Задача 399.

Дано: SMNK — правильная треугольная пирамида. MS = MK = 1, A_1 , B_1 , C_1 — точки пересечения медиан боковых граней MSK, MSN, KSN, $ABCA_1B_1C_1$ — вписанная в пирамиду

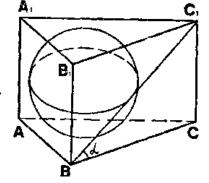

Дано: SMNKT — правильная четырехугольная пирамида, A_1 , B_1 , C_1 , D_1 — точки пересечения медиан боковых

Задача 401.

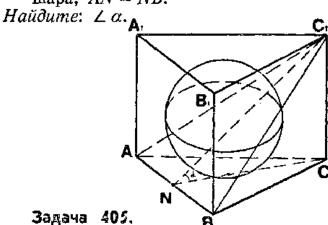

Дано: SABC — правильная треугольная пирамида, $SO \perp (ABC)$,

 $A_1B_1C_1A_2B_2C_2$ — вписанная в пирамиду правильная треугольная призма, $B_1C_1C_2B_2$ — квадрат, SO = 4,

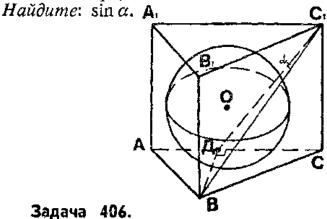
Задача 402.


Дано: SABCD — правильная четырехугольная нирамида, CS = CD, A_2C_1 — куб, вписанный в пирамиду.

Задача 403.

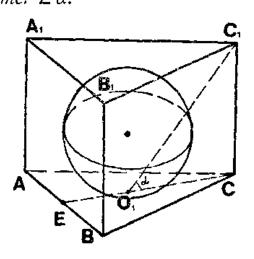

 $Дано: ABCA_1B_1C_1$ — правильная треу-

гольная призма, описанная вокруг шара. Hайдите: $\angle \alpha$.



Задача 404.

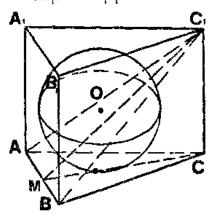
 $ABCA_1B_1C_1$ — правильная треугольная призма, описанная вокруг mapa, AN = NB.



 $Дано: ABCA_1B_1C_1$ — правильная треугольная призма, О — центр вписанного щара, $BD \perp AC$.

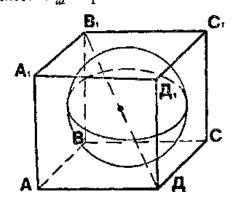
 $Дано: ABCA_1B_1C_1$ — описанная вокруг шара правильная треугольная призма, O_1 — центр $\triangle ABC$.

Hайдите: $\angle \alpha$.

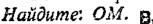


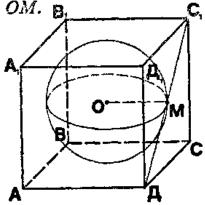
3. Стереометрия

Задача 407.

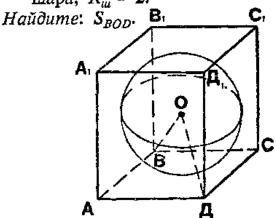

Дано: $ABCA_1B_1C_1$ — правильная треугольная призма, описанная вокруг шара.

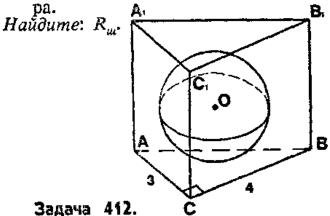
Hайдите: $S_{AC,B}: S_{BB,C,C}$.


Задача 408.

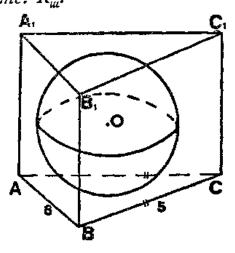

Дано: AC_1 — правильная четырехугольная призма, описанная вокруг шара. Найдите: R_{μ} : B_1D .

Задача 409.


Дано: AC_1 — правильная четырехугольная призма, описанная вокруг шара с центром в точке O, $DC_1 = 4\sqrt{2}$, $DM = MC_1$.

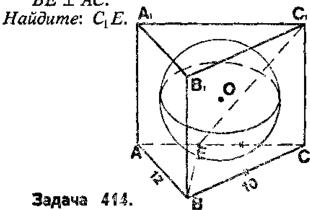

Задача 410.

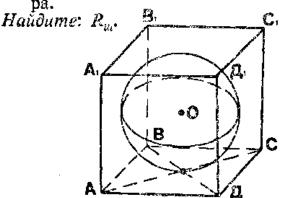
Дано: AC_1 — правильная четырехугольная призма, O — центр вписанного шара, $R_{u}=2$.



Задача 411.

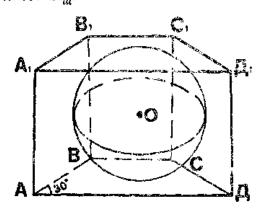
Дано: $ABCA_1B_1C_1$ — прямая треугольная призма, $\angle ACB = 90^\circ$, AC = 3, CB = 4, O — центр вписанного шара.


Дано: $ABCA_1B_1C_1$ — прямая треугольная призма, AC = BC = 5, AB = 6, O — центр вписанного шара. Найдите: R_{uv}

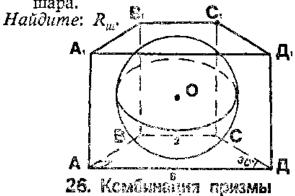

Задача 413.

 $ABCA_1B_1C_1$ — прямая треугольная призма, AC = BC = 10, AB = 12, — центр вписанного шара,

 $BE \perp AC$.

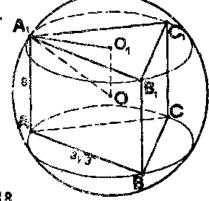


 \mathcal{A} ано: AC_1 — прямая четырехугольная призма, ABCD — ромб, AC = 16, BD = 12, O - центр винсанного ша-

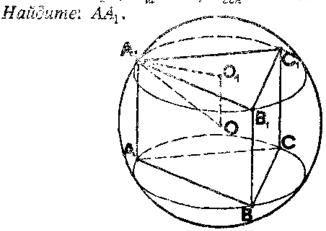

Задача 415.

Дано: АС, — прямая четырехугольная призма, АЕСО -- тралеция, AB = CD, $P_{AECD} = 16$, $\angle BAD = 30^{\circ}$, — центр випсанного шара. Hайдите: R_{m} .

Задача 416.


Дано: АС, — прямая четырехугольная призма, АВСО — транеция, $\angle BAD = 90^{\circ}, \ AD = 8, \ BC = 2,$ $\angle CDA = 30^{\circ}, O -$ центр вписанного шара.

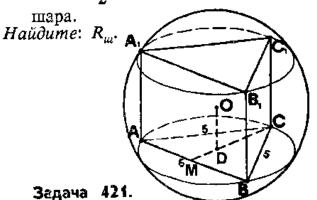
Задача 417.


 \mathcal{A} ано: $ABCA_iB_iC_i$ — правильная треугольная присма, $A_1B_1=3\sqrt{3}$, $AA_1 = 8$, O - центр описанного ша-

Haŭdume: R_{iu}.

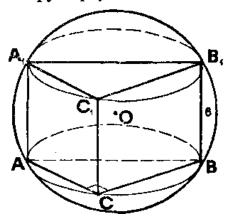

Задача 418.

 \mathcal{A} ано: $ABCA_{i}B_{i}C_{i}$ — правильная треугольная призма, О -- центр описанного шара, $R_{ui} = 10$, $S_{con} = 27\sqrt{3}$.



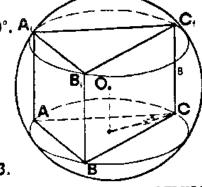
Задача 419.

 \mathcal{A} ано: $ABCA_1B_1C_1$ — правильная треугольная призма, О — центр описанного шара, $R_{u} = 5$, $AA_{1} = 8$, $ON \perp BC$, $O_{1}O_{2} \perp (ABC)$.



 \mathcal{A} ано: $ABCA_1B_1C_1$ — прямая треугольная призма, AC = CB = 5, AB = 6, $AA_1 = \frac{\sqrt{26}}{2}$, О — центр описанного

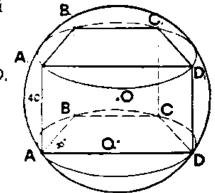
 \mathcal{A} ано: $ABCA_1B_1C_1$ — прямая треугольная призма, $\angle ACB = 90^{\circ}$, $R_{u} = 10$, $BB_1 = 6.$


Найдите: радиус окружности, описанной вокруг треугольника АВС.

Задача 422.

 \mathcal{A} ано: $ABCA_1B_1C_1$ — прямая треугольная призма, О — центр описанного mapa, $R_{uu} = 5$,

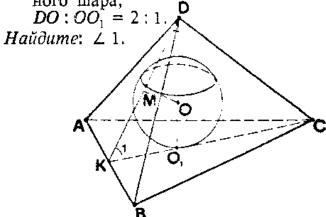
 $CC_1 = 8$ $\angle ACB = 30^{\circ}$. A Найдите: АВ.



Задача 423.

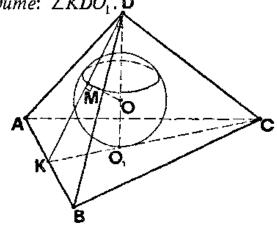
 \mathcal{A} ано: AC_1 — прямая четырехутольная призма, АВСО — трапешия.

 $\angle BAD = 30^{\circ}, AA = 40, O - \text{ центр}$ шара, описанного вокруг призмы, $R_{u}=25, O_1$ — пентр окружности,

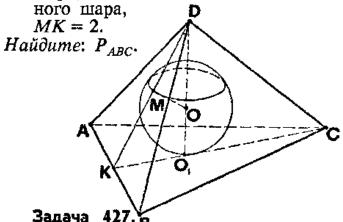

описанной вокруг трапеции ABCD. Найдите: BD.

27. Комбинация пирамиды с вписанным шаром

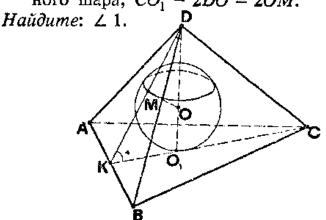
Задача 424.


Дано: DABC — правильная треутольная пирамида, О — центр вписанного шара, M — точка касания вписанного шара,

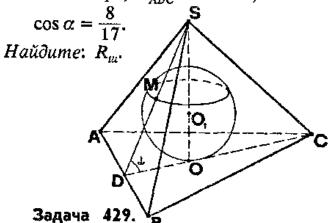
Задача 425.


 \mathcal{A} ано: DABC — правильная треугольная пирамида, O — центр вписанного шара, М — точка касания вписанного шара, $DM = KO_1$.

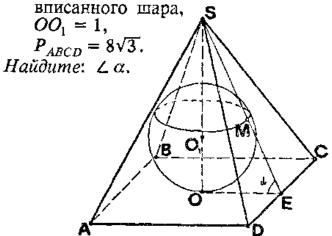
Hайдите: $\angle KDO_1$. \square


Задача 426.

Дано: DABC — правильная треугольная пирамида, О — центр вписанного шара, М — точка касания вписан-


Задача **427.** В

Дано: DABC — правильная треугольная пирамида, O — центр вписанного шара, M — точка касания вписанного шара, $CO_1 - 2DO = 2OM$.



Задача 428.

Дано: SABC — правильная треугольная пирамида, M — точка касания вписанного шара, O_1 — центр вписанного шара, $S_{ABC} = 300\sqrt{3}$,

Дано: SABCD — правильная четырехугольная пирамида, O_1 — центр вписанного шара, M — точка касания

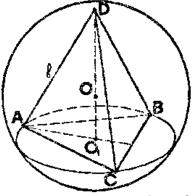
Задача 430.

Дано: SABCD — правильная четырехугольная пирамида, O_1 — центо впи-

Докажите, что точка O_1 делит высоту пирамиды в отношении 2:1, считая от вершины.

Задача 431.

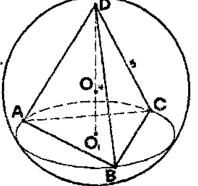
Дано: SABCD — правильная четырехугольная пирамида, O_1 — центр вписанного шара, M — точка касания вписанного шара, DK = KC, SK = 5, AD = DC = 6. Найдите: r_{m}


28. Комбинация пирамиды с описанным шаром

Задача 432.

Дано: DABC — правильная треугольная пирамида, O — центр описанного шара, h — высота пирамиды, R — раднус описанного шара, b — боковое ребро пирамиды.

Докажите справедливость формулы:

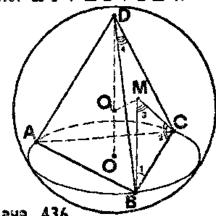

 $R=\frac{b^2}{2h}.$

Задача 433. С Дано: DABC — правильная треугольная

пирамида, О — центр описанного шара,

 $DO_1 = 4, \ DC = 5. \ Haйдите: <math>R_m$.

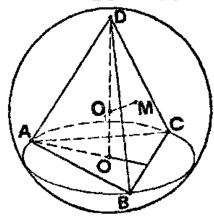
Задача 434.


Дано: DABC — правильная треугольная пирамида, O — центр описанного шара, $DO_1:O_1O=2:1$.

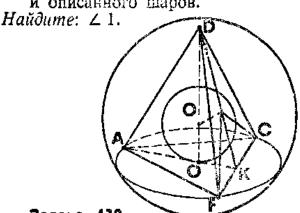
найдите: LDAO.

Задача 435.

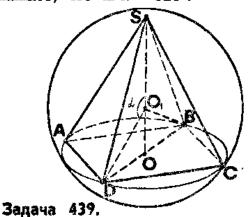
Дано: DABC — правильная треугольная пирамида, O_1 — центр описанного шара, $O_1M \perp (DBC)$.


Hай ∂ ите: $\angle 1 + \angle 2 + 2 \angle 4$.

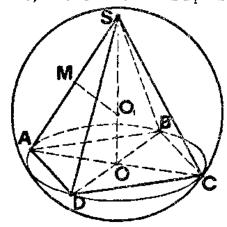
Задача 436.


Дано: DABC — правильная треугольная пирамида, C_1 — центр описанного шара, $O_1M \perp (BDC)$.

Докажите, что $\frac{BM}{DO} = \frac{DO_1}{DK}$.


Задача 437.

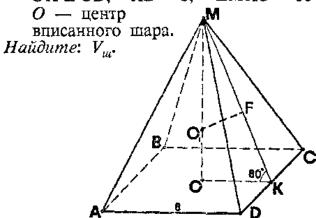
Дано: DABC — правильная треугольная пирамида, O_i — центр вписанного и описанного шаров.


Задача 438.

Дано: SABCD — правильная четырехугольная пирамида, O_1 — центр описанного шара, DS = DB. Докажите, что $\angle \alpha = 120^\circ$.

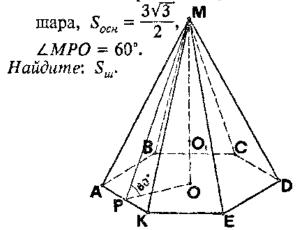
Дано: SABCD — правильная четырехугольная пирамида, $O_{\rm I}$ — центр описанного шара, AM = MS.

Докажите, что $SA \cdot SM = SO_1 \cdot SO$.

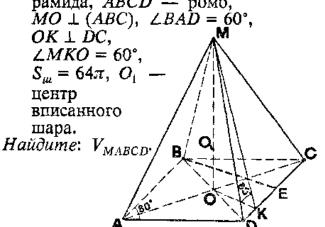


30. Задачи разные на комбинацию геометрических тел с шаром

Задача 446.


Дано: MABC — правильная треугольная пирамида, $MO \perp (ABC)$, $\angle MKC = 60^\circ$, BC = 4, O_1 — центр вписанного шара. Найдите: S_{uapa} .

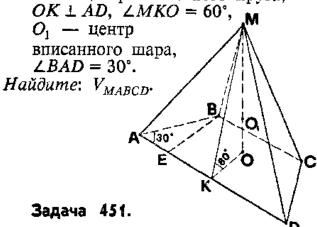
Дано: MABCD — правильная четырехугольная пирамида, $MO \perp (ABC)$, $OK \perp CD$, AD = 6, $\angle MKO = 60^{\circ}$,


Задача 448.

Дано: MABCDEK — правильная шестиугольная пирамида, $MO \perp (ABC)$, $OP \perp AK$, O_1 — центр вписанного

Задача 449.

Дано: MABCD — четырехугольная пирамида, ABCD — ромб, $MO + (ABC) + (BAD) = 60^{\circ}$

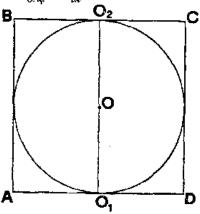


Задача 450.

Дано: MABCD — четырехугольная пирамида, ABCD — транеция,

$$AB = CD$$
, $V_{ui} = \frac{4}{3}\pi$, $MO \perp (ABC)$,

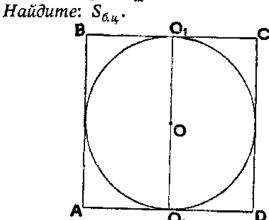
O — центр вписанного круга, $OK + AD / MKO = 60^\circ$


Дано: SABCD — правильная четырех-

Задача 452.

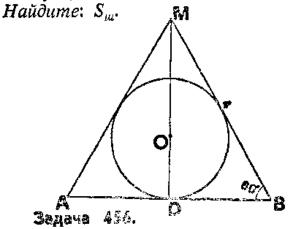
Дано: О — центр шара, вписанного в цилиндр, *ABCD* — осевое сечение цилиндра.

Hайдите: $S_{6.4}:S_{\mu}$.

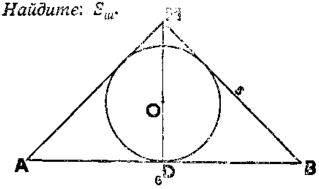


Задача 453.

Hай ∂ иme: $V_{\mathfrak{U}}$: $V_{\mathfrak{U}}$.

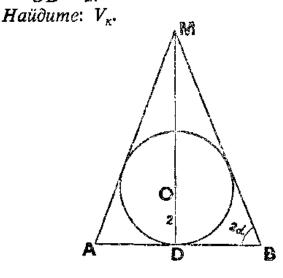

Задача 454.

Дано: O — центр шара, вписанного в цилиндр, ABCD — осевое сечение цилиндра, $V_{\mu}=8~\pi$.



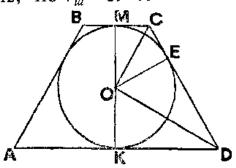
Задача 455.

Дано: O — центр шара, вписанного в конус, AMB — осевое сечение конуса, $\angle MBD = 60^{\circ}$, MB = 4.



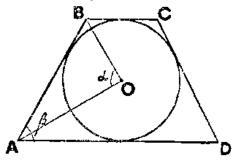
Дано: O — центр шара, вписанного в конус, AMB — оселое сечение конуса, MB = 5, AB = 6.

Задача 457.

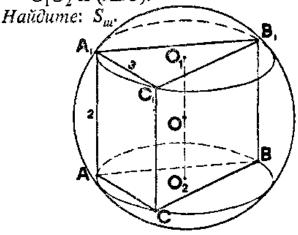

Дано: O — центр плара, вписанного в конус, AMB — осевое сечение конуса, $MD \perp AB$, $\triangle MBA = 2\alpha$, OD = 2.

Задача 458.

Дано: O — центр шара, вписанного в усеченный конус, ABCD — осевое сечение конуса, $OE \perp CD$, $MK \perp AD$, MC = r, KD = R, $OM = r_{u}$.


Доказать, что $r_{u}^2 = R \cdot r$.

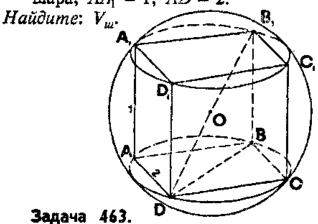
Задача 459.


Дано: O — ценір шара, вписанного в усеченный конус, ABCD — осевое сечение конуса, $\angle BOA = \alpha$, $\angle BAD = \beta$, $\alpha + \beta = 150^\circ$.

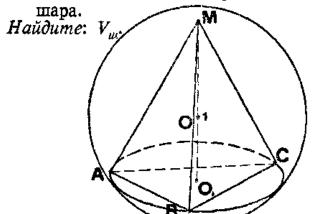
Hайдите: $3\alpha - 2\beta$.

Задача 460.

Дано: $ABCA_1B_1C_1$ — правильная треугольная призма, O — центр описанного шара, $A_1C_1=3$, $AA_1=2$, $O_1O_2\perp(ABC)$.

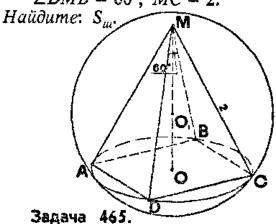

Задача 461.

Дано: $ABCA_1B_1C_1$ — прямая треугольная призма, AB = BC = 5, AC = 6, $BB_1 = 2$, O — центр описанного шара, $O_1O_2 \perp (ABC)$.

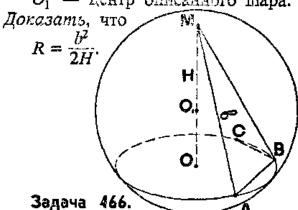


Задача 462.

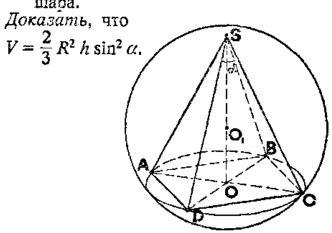
Дано: AC_1 — правильная четырехугольная призма, O — центр описанного шара, $AA_1 = 1$, AD = 2.



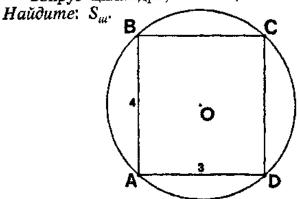
Дано: MABC — правильная треугольная пирамида, $MO_1 \perp (ABC)$, MC = 4, $MO_1 = 1$, O — центр описанного



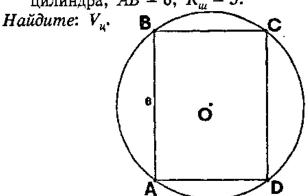
Задача 464.


Дано: MABCD — правильная четырехугольная пирамида, $MO \perp (ABC)$, O_1 — центр описанного шара, $\angle DMB = 60^\circ$, MC = 2.

Дано: правильная n-угольная пирамида, $MO \perp (ABC)$, MA = b, MO = H, O_1 — центр описанного шара.

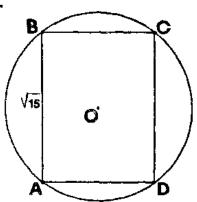


Дано: SABCD — правильная четырехугольная пирамида, V — объем пирамиды, SO = h — высота пирамиды, $O_1S = R$ — радиус описанного шара.

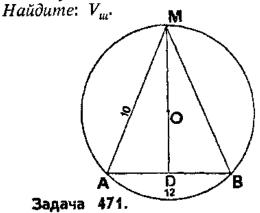

Задача 467.

Дано: ABCD — осевое сечение цилиндра, O — центр шара, описанного вокруг цилиндра, AD = 3, CD = 4.

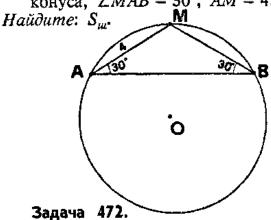
Задача 468.


Дано: AMB — осевое сечение цилиндра, O — центр шара, описанного вокруг цилиндра, AB = 6, $R_w = 5$.

Задача 469.

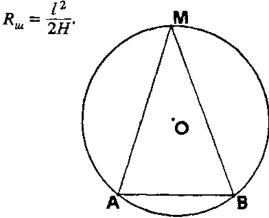

Дано: ABCD — осевое сечение цилиндра, O — центр шара, описанного вокруг цилиндра, $S_{u}=16\pi$, $AB=\sqrt{15}$.

Hайдите: $S_{\delta, \mu}$.

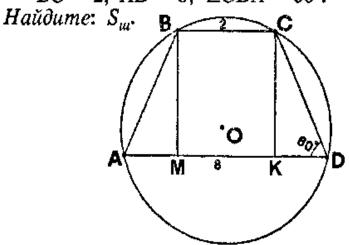


Задача 470.

Дано: AMB — осевое сечение конуса, O — центр шара, описанного вокруг конуса, AM = 10, AB = 12.

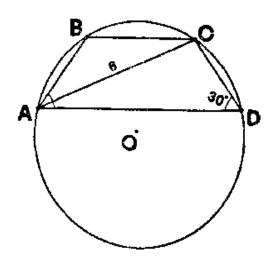


Дано: AMB — осевое сечение конуса, O — центр шара, описанного вокруг конуса, $\angle MAB = 30^\circ$, AM = 4.


Дано: АМВ — осевое сечение конуса, О — центр шара, описанного вокруг конуса, l — образующая, H — высота конуса.

Докажите справедливость формулы:

Задача 473.


Дано: ABCD — осевое сечение усеченного конуса, O — центр шара, описанного вокруг усеченного конуса, BC = 2, AD = 8, $\angle CDA = 60^\circ$.

Задача 474.

Дано: ABCD — осевое сечение усеченного конуса, O — центр шара, описанного вокруг усеченного конуса, AC = 6, $\angle CDA = 30^\circ$.

Найдите: V_ш.

